Recent Progress in Data-Driven Intelligent Modeling and Optimization Algorithms for Industrial Processes
Abstract
:1. Introduction
2. An Overview of Published Articles
3. Conclusions
Funding
Conflicts of Interest
References
- Du, S.; Huang, C.; Ma, X.; Fan, H. A review of data-driven intelligent monitoring for geological drilling processes. Processes 2024, 12, 2478. [Google Scholar] [CrossRef]
- Liu, P.; Wang, L.; Ranjan, R.; He, G.; Zhao, L. A survey on active deep learning: From model driven to data driven. ACM Comput. Surv. 2022, 54, 1–34. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, F.; Gong, G.; Yang, H.; Han, D. Intelligent technologies for construction machinery using data-driven methods. Autom. Constr. 2023, 147, 104711. [Google Scholar] [CrossRef]
- Du, S.; Ma, X.; Wu, M.; Cao, W.; Pedrycz, W. Time series anomaly detection via rectangular information granulation for sintering process. IEEE Trans. Fuzzy Syst. 2024, 32, 4799–4804. [Google Scholar] [CrossRef]
- Du, S.; Wu, M.; Chen, L.; Jin, L.; Cao, W.; Pedrycz, W. Operating performance improvement based on prediction and grade assessment for sintering process. IEEE Trans. Cybern. 2022, 52, 10529–10541. [Google Scholar] [CrossRef]
- Mahmoodi, E.; Fathi, M.; Tavana, M.; Ghobakhloo, M.; Ng, A.H. Data-driven simulation-based decision support system for resource allocation in Industry 4.0 and smart manufacturing. J. Manuf. Syst. 2024, 72, 287–307. [Google Scholar] [CrossRef]
- Yang, C.; Nutakki, T.U.K.; Alghassab, M.A.; Alkhalaf, S.; Alturise, F.; Alharbi, F.S.; Elmasry, Y.; Abdullaev, S. Optimized integration of solar energy and liquefied natural gas regasification for sustainable urban development: Dynamic modeling, data-driven optimization, and case study. J. Clean. Prod. 2024, 447, 141405. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Z.X.; Luo, X.; Huang, Y.; Yu, Z.; Yang, X. Predicting dynamic compressive strength of frozen-thawed rocks by characteristic impedance and data-driven methods. J. Rock Mech. Geotech. Eng. 2024, 16, 2591–2606. [Google Scholar] [CrossRef]
- Chi, Z.; Chen, X.; Xia, H.; Liu, C.; Wang, Z. An adaptive control system based on spatial–temporal graph convolutional and disentangled baseline-volatility prediction of bellows temperature for iron ore sintering process. J. Process Control 2024, 140, 103254. [Google Scholar] [CrossRef]
- Mattera, G.; Caggiano, A.; Nele, L. Optimal data-driven control of manufacturing processes using reinforcement learning: An application to wire arc additive manufacturing. J. Intell. Manuf. 2024. [Google Scholar] [CrossRef]
- Mahesh, T.R.; Chandrasekaran, S.; Ram, V.A.; Kumar, V.V.; Vivek, V.; Guluwadi, S. Data-driven intelligent condition adaptation of feature extraction for bearing fault detection using deep responsible active learning. IEEE Access 2024, 12, 45381–45397. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Xia, H.; Chi, Z. Burn-through point prediction and control based on multi-cycle dynamic spatio-temporal feature extraction. Control Eng. Pract. 2025, 154, 106165. [Google Scholar] [CrossRef]
- Sun, B.; Guo, T. Mechanism-driven and data-driven fusion prediction of seismic damage evolution of concrete structures based on cooperative multi-particle swarm optimization. Eng. Appl. Artif. Intell. 2024, 133, 108659. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, M.; Li, H.; Wu, X. A data-driven intelligent energy efficiency management system for ships. IEEE Intell. Transp. Syst. Mag. 2022, 15, 270–284. [Google Scholar] [CrossRef]
- Cai, Q.; Luo, X.; Wang, P.; Gao, C.; Zhao, P. Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application. Appl. Energy 2022, 305, 117913. [Google Scholar] [CrossRef]
- Jing, F.; Li, F.; Song, Y.; Li, J.; Feng, Z.; Guo, J. Root Cause Tracing Using Equipment Process Accuracy Evaluation for Looper in Hot Rolling. Algorithms 2024, 17, 102. [Google Scholar] [CrossRef]
- Dey, B.; Sharma, G.; Bokoro, P. A Novel Hybrid Crow Search Arithmetic Optimization Algorithm for Solving Weighted Combined Economic Emission Dispatch with Load-Shifting Practice. Algorithms 2024, 17, 313. [Google Scholar] [CrossRef]
- Tobón, A.; Ramos-Paja, C.; Orozco-Gutíerrez, M.; Saavedra-Montes, A.; Serna-Garcés, S. Adaptive Sliding-Mode Controller for a Zeta Converter to Provide High-Frequency Transients in Battery Applications. Algorithms 2024, 17, 319. [Google Scholar] [CrossRef]
- Ying, W.; Wang, Z.; Li, H.; Du, S.; Zhao, M. Intelligent Ship Scheduling and Path Planning Method for Maritime Emergency Rescue. Algorithms 2024, 17, 197. [Google Scholar] [CrossRef]
- Buchmeister, B.; Herzog, N. Advancements in Data Analysis for the Work-Sampling Method. Algorithms 2024, 17, 183. [Google Scholar] [CrossRef]
- Hernandez-Resendiz, J.; Tello-Leal, E.; Sepúlveda, M. A Data-Driven Approach to Discovering Process Choreography. Algorithms 2024, 17, 188. [Google Scholar] [CrossRef]
- Xu, W.; Qian, J.; Wu, Y.; Yan, S.; Ni, Y.; Yang, G. A VIKOR-Based Sequential Three-Way Classification Ranking Method. Algorithms 2024, 17, 530. [Google Scholar] [CrossRef]
- Tian, G.; Wang, F. Data-Driven Load Frequency Control for Multi-Area Power System Based on Switching Method under Cyber Attacks. Algorithms 2024, 17, 233. [Google Scholar] [CrossRef]
- Moutsopoulou, A.; Petousis, M.; Stavroulakis, G.; Pouliezos, A.; Vidakis, N. Novelty in Intelligent Controlled Oscillations in Smart Structures. Algorithms 2024, 17, 505. [Google Scholar] [CrossRef]
- Castellanos-Cárdenas, D.; Posada, N.L.; Orozco-Duque, A.; Sepúlveda-Cano, L.M.; Castrillón, F.; Camacho, O.; Vásquez, R.E. A Review on Data-Driven Model-Free Sliding Mode Control. Algorithms 2024, 17, 543. [Google Scholar] [CrossRef]
- Zarrouk, T.; Nouari, M.; Salhi, J.; Abbadi, M.; Abbadi, A. Three-Dimensional Finite Element Modeling of Ultrasonic Vibration-Assisted Milling of the Nomex Honeycomb Structure. Algorithms 2024, 17, 204. [Google Scholar] [CrossRef]
- Violante, J.; Machado, M.; Mendes, A.; Almeida, T. An Interface to Monitor Process Variability Using the Binomial ATTRIVAR SS Control Chart. Algorithms 2024, 17, 216. [Google Scholar] [CrossRef]
No. | DOI | Research Area | Focus | Type of Research | Industry | Country |
---|---|---|---|---|---|---|
1 | 10.3390/a17030102 | Optimization algorithms | hot strip rolling; looper; production stability; root cause traceability | Mathematical modeling | Manufacturing | China |
2 | 10.3390/a17050204 | Process optimization | modeling finite elements; cutting tool; surface quality; stress and strain distribution; chip size | Mathematical modeling | Aerospace | Morocco |
3 | 10.3390/a17070313 | Optimization algorithms | combined economic emission dispatch; load shifting; demand side management; crow search algorithm; arithmetic optimization algorithm | Mathematical modeling | Power systems | South Africa |
4 | 10.3390/a17070319 | Optimization algorithms | hybrid energy storage system; adaptive sliding-mode controller; battery degradation; supercapacitor; Zeta converter | Mathematical modeling | Power systems | Colombia |
5 | 10.3390/a17050183 | Decision support strategies | work sampling; observations; proportions; interdependence between activities | Empirical research | Production management | Slovenia |
6 | 10.3390/a17050188 | Decision support strategies | process choreography; data-driven; process mining | Mathematical modeling | Production management | Mexico |
7 | 10.3390/a17110530 | Decision support strategies | ideal solution; sequential three-way decisions; muti-attribute decision making | Mathematical modeling | Production management | China |
8 | 10.3390/a17060233 | Control strategies | load frequency control; switching system; event-triggered; model-free adaptive control | Mathematical modeling | Power systems | China |
9 | 10.3390/a17110505 | Control strategies | vibration; intelligent control; piezoelectric structures; H2 criterion; H-infinity criterion | Mathematical modeling | Manufacturing | Greece |
10 | 10.3390/a17120543 | Control strategies | Sliding mode control; data-driven techniques; intelligent algorithms | Review | Manufacturing | Colombia |
11 | 10.3390/a17050216 | Process monitoring | control chart; variability; variance; interface; Shiny package | Mathematical modeling | Manufacturing | Brazil |
12 | 10.3390/a17050204 | Optimization algorithms | maritime emergency rescue; intelligent navigation; path planning; A* algorithm; B-spline interpolation; regional search | Mathematical modeling | Maritime rescue | China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Huang, Z.; Jin, L.; Wan, X. Recent Progress in Data-Driven Intelligent Modeling and Optimization Algorithms for Industrial Processes. Algorithms 2024, 17, 569. https://doi.org/10.3390/a17120569
Du S, Huang Z, Jin L, Wan X. Recent Progress in Data-Driven Intelligent Modeling and Optimization Algorithms for Industrial Processes. Algorithms. 2024; 17(12):569. https://doi.org/10.3390/a17120569
Chicago/Turabian StyleDu, Sheng, Zixin Huang, Li Jin, and Xiongbo Wan. 2024. "Recent Progress in Data-Driven Intelligent Modeling and Optimization Algorithms for Industrial Processes" Algorithms 17, no. 12: 569. https://doi.org/10.3390/a17120569
APA StyleDu, S., Huang, Z., Jin, L., & Wan, X. (2024). Recent Progress in Data-Driven Intelligent Modeling and Optimization Algorithms for Industrial Processes. Algorithms, 17(12), 569. https://doi.org/10.3390/a17120569