EPSOM-Hyb: A General Purpose Estimator of Log-Marginal Likelihoods with Applications in Probabilistic Graphical Models
Abstract
:1. Introduction
2. The Hybrid Estimator
3. The Epsom-Hyb Estimator
- In Equation (2), we take to be a local approximation to constructed using a second-order Taylor expansion of around a representative point .
- The second-order Taylor approximation complicates the calculation of the integrals in Equation (4). We address the intractability of the resulting integral using an expectation propagation (EP) algorithm that targets high-dimensional Gaussian integrals.
- We exploit the unimodality of to identify suitable points within each partition set around which we perform the Taylor expansion required for .
Algorithm 1: EPSOM-Hyb |
3.1. Local Approximation Using a Taylor Expansion
3.2. Estimating Truncated Gaussian Probabilities
3.3. Selecting the Candidate Point in Each Partition Set
4. Application to Gaussian Graphical Models
4.1. Hyper Inverse-Wishart Induced Cholesky Factor Density
4.2. G-Wishart Prior for General Graphs
G-Wishart-Induced Cholesky Factor Density
4.3. Junction Tree Representation
4.3.1. Experiment 1: Block Diagonal Graph Structure
Algorithm 2: EPSOM-HybJT |
4.3.2. Experiment 2: Normalizing Constants of General Graphs
4.4. Software Contribution
5. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GGM | Gaussian Graphical Model |
JT | Junction Tree |
KL | Kullback–Leibler |
IW | Inverse Wishart |
HIW | Hyper-Inverse Wishart |
GW | G-Wishart |
MCMC | Markov Chain Monte Carlo |
EP | Expectation Propagation |
CART | Classification and Regression Tree |
EPSOM-Hyb | EP-guided Second-Order Modified Hybrid |
EPSOM-HybJT | EP-guided Second-Order Modified Hybrid Junction Tree |
BSE | Bridge Sampling Estimator |
WBSE | Warp Bridge Sampling Estimator |
AE | Average Error |
MRE | Mean Relative Error |
Appendix A. General Use of the hybrid Package
Appendix B. General Use of the Graphml Package
Appendix C. Hyper-Inverse Wishart Density
Appendix D. Hyper-Inverse Wishart Objective Function
Appendix E. G-Wishart Objective Function
- Case 1: for , , , and coming after , we have
- Case 2: for , and , we obtain the derivative:
- In case 1, each term in the outer summation in Equation (A9) can be computed as:
References
- Lauritzen, S.L. Graphical Models; Clarendon Press: Oxford, UK, 1996; Volume 17. [Google Scholar]
- Maathuis, M.; Drton, M.; Lauritzen, S.; Wainwright, M. Handbook of Graphical Models, 1st ed.; CRC Press, Inc.: Boca Raton, FL, USA, 2018. [Google Scholar]
- Tierney, L.; Kadane, J.B. Accurate Approximations for Posterior Moments and Marginal Densities. J. Am. Stat. Assoc. 1986, 81, 82–86. [Google Scholar] [CrossRef]
- Newton, M.A.; Raftery, A.E. Approximate Bayesian Inference with the Weighted Likelihood Bootstrap. J. R. Stat. Soc. Ser. B 1994, 56, 3–26. [Google Scholar] [CrossRef]
- Lenk, P. Simulation Pseudo-Bias Correction to the Harmonic Mean Estimator of Integrated Likelihoods. J. Comput. Graph. Stat. 2009, 18, 941–960. [Google Scholar] [CrossRef]
- Pajor, A. Estimating the Marginal Likelihood Using the Arithmetic Mean Identity. Bayesian Anal. 2017, 12, 261–287. [Google Scholar] [CrossRef]
- Neal, R.M. Annealed importance sampling. Stat. Comput. 2001, 11, 125–139. [Google Scholar] [CrossRef]
- Chib, S. Marginal Likelihood from the Gibbs Output. J. Am. Stat. Assoc. 1995, 90, 1313–1321. [Google Scholar] [CrossRef]
- Meng, X.L.; Wong, W.H. Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Stat. Sin. 1996, 6, 831–860. [Google Scholar]
- Meng, X.L.; Schilling, S. Warp Bridge Sampling. J. Comput. Graph. Stat. 2002, 11, 552–586. [Google Scholar] [CrossRef]
- Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 2006, 1, 833–859. [Google Scholar] [CrossRef]
- Hubin, A.; Storvik, G. Estimating the marginal likelihood with Integrated nested Laplace approximation (INLA). arXiv 2016, arXiv:1611.01450. [Google Scholar] [CrossRef]
- Barthelmé, S.; Chopin, N. Expectation-Propagation for Likelihood-Free Inference. arXiv 2011, arXiv:1107.5959. [Google Scholar] [CrossRef]
- Roverato, A. Cholesky decomposition of a hyper inverse Wishart matrix. Biometrika 2000, 87, 99–112. [Google Scholar] [CrossRef]
- Giudici, P.; Green, P. Decomposable graphical Gaussian model determination. Biometrika 1999, 86, 785–801. [Google Scholar] [CrossRef]
- Dellaportas, P.; Giudici, P.; Roberts, G. Bayesian inference for nondecomposable graphical Gaussian models. Sankhyā Indian J. Stat. 2003, 65, 43–55. [Google Scholar]
- Atay-Kayis, A.; Massam, H. A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models. Biometrika 2005, 92, 317–335. [Google Scholar] [CrossRef]
- Khare, K.; Rajaratnam, B.; Saha, A. Bayesian inference for Gaussian graphical models beyond decomposable graphs. arXiv 2015, arXiv:1505.00703. [Google Scholar] [CrossRef]
- Piccioni, M. Independence Structure of Natural Conjugate Densities to Exponential Families and the Gibbs’ Sampler. Scand. J. Stat. 2000, 27, 111–127. [Google Scholar] [CrossRef]
- Rajaratnam, B.; Massam, H.; Carvalho, C.M. Flexible covariance estimation in graphical Gaussian models. Ann. Stat. 2008, 36, 2818–2849. [Google Scholar] [CrossRef]
- Lenkoski, A. A Direct Sampler for G-Wishart Variates. Stat 2013, 2, 119–128. [Google Scholar] [CrossRef]
- Uhler, C.; Lenkoski, A.; Richards, D. Exact Formulas for the Normalizing Constants of Wishart Distributions for Graphical Models. Ann. Stat. 2018, 46, 90–118. [Google Scholar] [CrossRef]
- Bhadra, A.; Sagar, K.; Banerjee, S.; Datta, J. Graphical Evidence. arXiv 2022, arXiv:2205.01016. [Google Scholar] [CrossRef]
- Chuu, E.; Pati, D.; Bhattacharya, A. A Hybrid Approximation to the Marginal Likelihood. In Proceedings of the AISTATS, San Diego, CA, USA, 13–15 April 2021. [Google Scholar]
- Breiman, L. Classification and Regression Trees; Wadsworth International Group: Franklin, TN, USA, 1984. [Google Scholar]
- Kleijn, B.J.K.; van der Vaart, A.W. Misspecification in infinite-dimensional Bayesian statistics. Ann. Statist. 2006, 34, 837–877. [Google Scholar] [CrossRef]
- Ghosal, S.; Van Der Vaart, A. Convergence rates of posterior distributions for noniid observations. Ann. Stat. 2007, 35, 192–223. [Google Scholar] [CrossRef]
- Vaart, A.W.v.d. Asymptotic Statistics; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef]
- Genz, A. Numerical Computation of Multivariate Normal Probabilities. J. Comput. Graph. Stat. 1992, 1, 141. [Google Scholar] [CrossRef]
- Botev, Z.I. The normal law under linear restrictions: Simulation and estimation via minimax tilting. J. R. Stat. Soc. Ser. B 2016, 79, 125–148. [Google Scholar] [CrossRef]
- Minka, T.P. Expectation Propagation for approximate Bayesian inference. arXiv 2013, arXiv:1301.2294. [Google Scholar] [CrossRef]
- Cunningham, J.P.; Hennig, P.; Lacoste-Julien, S. Gaussian probabilities and expectation propagation. arXiv 2011, arXiv:1111.6832. [Google Scholar]
- Mohammadi, R.; Wit, E.C. BDgraph: An R Package for Bayesian Structure Learning in Graphical Models. J. Stat. Softw. 2019, 89, 1–30. [Google Scholar] [CrossRef]
- Diaconis, P.; Ylvisaker, D. Conjugate priors for exponential families. Ann. Stat. 1979, 7, 269–281. [Google Scholar] [CrossRef]
- Dawid, A.P.; Lauritzen, S.L. Hyper Markov laws in the statistical analysis of decomposable graphical models. Ann. Statist. 1993, 21, 1272–1317. [Google Scholar] [CrossRef]
- Robertson, N.; Seymour, P. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 1986, 7, 309–322. [Google Scholar] [CrossRef]
- Fitch, A.M.; Jones, M.B.; Massam, H. The Performance of Covariance Selection Methods That Consider Decomposable Models Only. Bayesian Anal. 2014, 9, 659–684. [Google Scholar] [CrossRef]
- Chuu, E. hybrid: Hybrid Approximation to the Marginal Likelihood, R package version 1.0.; 2022. Available online: https://proceedings.mlr.press/v130/chuu21a.html (accessed on 10 May 2024).
- Chuu, E. graphml: Hybrid Approximation for Computing Normalizing Constants of G-Wishart Densities. R package, version 1.0. 2022. [Google Scholar]
- Jones, B.; Carvalho, C.; Dobra, A.; Hans, C.; Carter, C.; West, M. Experiments in Stochastic Computation for High-Dimensional Graphical Models. Stat. Sci. 2005, 20, 388–400. [Google Scholar] [CrossRef]
Dimension | Method | Mean | AE | RMSE |
---|---|---|---|---|
EPSOM-HybJT | −6230.59 | 0.41 | 0.45 | |
BSE | −6230.56 | −0.74 | 1.93 | |
WBSE | −6230.59 | −0.70 | 2.22 | |
EPSOM-HybJT | −7881.46 | 0.51 | 0.56 | |
BSE | −7875.70 | −5.26 | 6.31 | |
WBSE | −7875.76 | −5.19 | 6.09 |
Dimension | Method | Mean | MRE | Runtime |
---|---|---|---|---|
EPSOM-HybJT | 920.16 | 000001 | ||
GNORM | 00920.17 | 0000.03 | ||
EPSOM-HybJT | 9201.55 | 0009.60 | ||
GNORM | 09201.74 | 0035.94 | ||
EPSOM-HybJT | 18,403.14 | 19.26 | ||
GNORM | 18,403.46 | 0796.07 | ||
EPSOM-HybJT | 27,604.72 | 28.92 | ||
GNORM | 27,605.18 | 4587.46 |
# Vertices | Method | Mean | SD | Runtime |
---|---|---|---|---|
EPSOM-HybJT | −2477.40 | 0.003 | 000.01 | |
GNORM | 0−2468.19 | 0.000 | 000.02 | |
EPSOM-HybJT | −7450.69 | 0.012 | 002.99 | |
GNORM | 0−7428.00 | 0.773 | 012.34 | |
EPSOM-HybJT | −10,030.95 | 0.015 | 4.68 | |
GNORM | −10,003.81 | 1.596 | 042.76 | |
EPSOM-HybJT | −12,563.87 | 0.014 | 6.76 | |
GNORM | −12,528.42 | 2.385 | 108.87 | |
EPSOM-HybJT | −15,170.05 | 0.017 | 15.26 | |
GNORM | -Inf | — | 231.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuu, E.; Niu, Y.; Bhattacharya, A.; Pati, D. EPSOM-Hyb: A General Purpose Estimator of Log-Marginal Likelihoods with Applications in Probabilistic Graphical Models. Algorithms 2024, 17, 213. https://doi.org/10.3390/a17050213
Chuu E, Niu Y, Bhattacharya A, Pati D. EPSOM-Hyb: A General Purpose Estimator of Log-Marginal Likelihoods with Applications in Probabilistic Graphical Models. Algorithms. 2024; 17(5):213. https://doi.org/10.3390/a17050213
Chicago/Turabian StyleChuu, Eric, Yabo Niu, Anirban Bhattacharya, and Debdeep Pati. 2024. "EPSOM-Hyb: A General Purpose Estimator of Log-Marginal Likelihoods with Applications in Probabilistic Graphical Models" Algorithms 17, no. 5: 213. https://doi.org/10.3390/a17050213
APA StyleChuu, E., Niu, Y., Bhattacharya, A., & Pati, D. (2024). EPSOM-Hyb: A General Purpose Estimator of Log-Marginal Likelihoods with Applications in Probabilistic Graphical Models. Algorithms, 17(5), 213. https://doi.org/10.3390/a17050213