Hardness and Approximability of Dimension Reduction on the Probability Simplex
Abstract
:1. Introduction
2. Statement of the Problem and Mathematical Preliminaries
3. Hardness
4. Approximation
Algorithm 1: GreedyApprox |
1. Compute ; 2. Let be the content of bin j after the first i components of p have been placed ( for each ); 3. For Let j be the smallest bin index for which holds that , place into the j-th bin: , for each ; 4. Output . |
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burges, C.J. Dimension reduction: A guided tour. Found. Trends Mach. Learn. 2010, 2, 275–365. [Google Scholar] [CrossRef]
- Sorzano, C.O.S.; Vargas, J.; Montano, A.P. A survey of dimensionality reduction techniques. arXiv 2014, arXiv:1403.2877. [Google Scholar]
- Abdullah, A.; Kumar, R.; McGregor, A.; Vassilvitskii, S.; Venkatasubramanian, S. Sketching, Embedding, and Dimensionality Reduction for Information Spaces. Artif. Intell. Stat. PMLR 2016, 51, 948–956. [Google Scholar]
- Carter, K.M.; Raich, R.; Finn, W.G.; Hero, A.O., III. Information-geometric dimensionality reduction. IEEE Signal Process. Mag. 2011, 28, 89–99. [Google Scholar] [CrossRef]
- Gokhale, D.V. Approximating discrete distributions, with applications. J. Am. Stat. Assoc. 1973, 68, 1009–1012. [Google Scholar] [CrossRef]
- Globerson, A.; Tishby, N. Sufficient dimensionality reduction. J. Mach. Learn. Res. 2003, 3, 1307–1331. [Google Scholar]
- Lewis, P.M., II. Approximating probability distributions to reduce storage requirements. Inf. Control. 1959, 2, 214–225. [Google Scholar] [CrossRef]
- Adler, A.; Tang, J.; Polyanskiy, Y. Efficient representation of large-alphabet probability distributions. IEEE Sel. Areas Inf. Theory 2022, 3, 651–663. [Google Scholar] [CrossRef]
- Cicalese, F.; Gargano, L.; Vaccaro, U. Approximating probability distributions with short vectors, via information theoretic distance measures. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1138–1142. [Google Scholar]
- Cohen, L.; Grinshpoun, T.; Weiss, G. Efficient optimal Kolmogorov approximation of random variables. Artif. Intell. 2024, 329, 104086. [Google Scholar] [CrossRef]
- Cohen, L.; Weiss, G. Efficient optimal approximation of discrete random variables for estimation of probabilities of missing deadlines. Proc. Aaai Conf. Artif. Intell. 2019, 33, 7809–7815. [Google Scholar] [CrossRef]
- Vidyasagar, M. A metric between probability distributions on finite sets of different cardinalities and applications to order reduction. IEEE Trans. Autom. Control. 2012, 57, 2464–2477. [Google Scholar] [CrossRef]
- Kovačević, M.; Stanojević, I.; Šenk, V. On the entropy of couplings. Inf. Comput. 2015, 242, 369–382. [Google Scholar] [CrossRef]
- Cicalese, F.; Gargano, L.; Vaccaro, U. Minimum-entropy couplings and their applications. IEEE Trans. Inf. Theory 2019, 65, 3436–3451. [Google Scholar] [CrossRef]
- Compton, S. A tighter approximation guarantee for greedy minimum entropy coupling. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022; pp. 168–173. [Google Scholar]
- Compton, S.; Katz, D.; Qi, B.; Greenewald, K.; Kocaoglu, M. Minimum-entropy coupling approximation guarantees beyond the majorization barrier. Int. Conf. Artif. Intell. Stat. 2023, 206, 10445–10469. [Google Scholar]
- Li, C. Efficient approximate minimum entropy coupling of multiple probability distributions. IEEE Trans. Inf. Theory 2021, 67, 5259–5268. [Google Scholar] [CrossRef]
- Sokota, S.; Sam, D.; Witt, C.; Compton, S.; Foerster, J.; Kolter, J. Computing Low-Entropy Couplings for Large-Support Distributions. arXiv 2024, arXiv:2405.19540. [Google Scholar]
- Rujeerapaiboon, N.; Schindler, K.; Kuhn, D.; Wiesemann, W. Scenario reduction revisited: Fundamental limits and guarantees. Math. Program. 2018, 191, 207–242. [Google Scholar] [CrossRef]
- Gagie, T. Compressing probability distributions. Inf. Process. Lett. 2006, 97, 133–137. [Google Scholar] [CrossRef]
- Cohen, L.; Fried, D.; Weiss, G. An optimal approximation of discrete random variables with respect to the Kolmogorov distance. arXiv 2018, arXiv:1805.07535. [Google Scholar]
- Pavlikov, K.; Uryasev, S. CVaR distance between univariate probability distributions and approximation problems. Ann. Oper. Res. 2018, 262, 67–88. [Google Scholar] [CrossRef]
- Pflug, G.C.; Pichler, A. Approximations for probability distributions and stochastic optimization problems. In Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Market Strategies; Springer: Berlin/Heidelberg, Germany, 2011; pp. 343–387. [Google Scholar]
- Melucci, M. A brief survey on probability distribution approximation. Comput. Sci. Rev. 2019, 33, 91–97. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Lamarche-Perrin, R.; Demazeau, Y.; Vincent, J.M. The best-partitions problem: How to build meaningful aggregations. In Proceedings of the IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Atlanta, GA, USA, 17–20 November 2013; pp. 399–404. [Google Scholar]
- Kearns, M.; Mansour, Y.; Ng, A.Y. An information-theoretic analysis of hard and soft assignment methods for clustering. In Learning in Graphical Models; Springer: Dordrecht, The Netherlands, 1998; pp. 495–520. [Google Scholar]
- Shore, J.; Johnson, R. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef]
- Garey, M.; Johnson, D. Strong NP-Completeness results: Motivation, examples, and implications. J. ACM 1978, 25, 499–508. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Dell’Olmo, P.; Kellerer, H.; Speranza, M.; Tuza, Z. A 13/12 approximation algorithm for bin packing with extendable bins. Inf. Process. Lett. 1998, 65, 229–233. [Google Scholar] [CrossRef]
- Coffman, E.G.; Garey, M.R.; Johnson, D.S. Approximation Algorithms for Bin Packing: A Survey. In Approximation Algorithms for NP-Hard Problems; Hochbaum, D., Ed.; PWS Publishing Co.: Worcester, UK, 1996; pp. 46–93. [Google Scholar]
- Sason, I. Divergence Measures: Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems. Entropy 2022, 24, 712. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, R. Hardness and Approximability of Dimension Reduction on the Probability Simplex. Algorithms 2024, 17, 296. https://doi.org/10.3390/a17070296
Bruno R. Hardness and Approximability of Dimension Reduction on the Probability Simplex. Algorithms. 2024; 17(7):296. https://doi.org/10.3390/a17070296
Chicago/Turabian StyleBruno, Roberto. 2024. "Hardness and Approximability of Dimension Reduction on the Probability Simplex" Algorithms 17, no. 7: 296. https://doi.org/10.3390/a17070296
APA StyleBruno, R. (2024). Hardness and Approximability of Dimension Reduction on the Probability Simplex. Algorithms, 17(7), 296. https://doi.org/10.3390/a17070296