Design of Multichannel Spectrum Intelligence Systems Using Approximate Discrete Fourier Transform Algorithm for Antenna Array-Based Spectrum Perception Applications
Abstract
:1. Introduction
1.1. FR3 Band: The Goldilocks Spectrum
1.2. A Shared Spectrum Economy
1.3. The Need for Real-Time AI Spectral Perception
1.4. Spectrum Sensors with Omnipresent Perception
1.5. Contribution of the Paper
1.6. Organization of the Paper
2. Review
2.1. Dynamic Spectrum Access: Signal Processing and ML/DL Approaches
2.2. Radio Astronomy and RFI
3. Approximate DFT
3.1. Theoretical Background
3.2. Optimization Problem
3.3. 32-Point ADFT
3.4. Fast Algorithm and Complexity Analysis
4. System Overview
4.1. Proposed Architecture
4.2. Analog Front-Ends
4.3. ADFT Cores and Digital ADFT Spectral Estimation
4.4. Digital FFT Spectrometers
4.5. Digital High-Speed Connectivity
5. Experimental Results
5.1. Calibration
5.2. Beam Measurements
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | Analog-to-digital converter; |
ADFT | Approximate discrete Fourier transform; |
AI | Artificial intelligence; |
ALMA | Atacama large millimeter array; |
BRAM | Block random access memory; |
CASPER | Collaboration for astronomy signal processing and electronics research; |
CSI | Channel state information; |
CW | Continuous wave; |
DFT | Discrete Fourier transform; |
DL | Deep learning; |
DSA | Dynamic spectrum access; |
DSP | Digital signal processing; |
FCC | Federal communication commission; |
FFT | Fast Fourier transform; |
FPGA | Field-programmable gate array; |
GNSS | Global navigation satellite system; |
IF | Intermediate frequency; |
IOT | Internet of things; |
ISI | Inter-symbol interference; |
ITU | International telecommunication union; |
LNA | Low-noise amplifier; |
LO | Local oscillator; |
ML | Machine learning; |
ngVLA | Next-generation very large array; |
NSF | National Science Foundation; |
OET | Office of Engineering and Technology; |
PCB | Printed circuit board; |
PSD | Power spectral density; |
PU | Primary user; |
RF | Radio frequency; |
RFI | Radio frequency interference; |
RL | Reinforcement learning; |
ROACH | Reconfigurable open architecture computing hardware; |
SDR | Software-defined radio; |
SFP | Small form-factor pluggable; |
SKA | Square kilometre array; |
SNR | Signal-to-noise ratio; |
SU | Secondary user; |
ULA | Uniform linear array; |
WSU | Wideband sensitivity upgrade. |
Appendix A
Appendix A.1. 32-Point ADFT Fast Algorithm
References
- Tolkien, J. The Hobbit & The Lord of the Rings; Houghton Mifflin Harcourt: Boston, MA, USA, 1954. [Google Scholar]
- Kang, S.; Mezzavilla, M.; Rangan, S.; Madanayake, A.; Venkatakrishnan, S.B.; Hellbourg, G.; Ghosh, M.; Rahmani, H.; Dhananjay, A. Cellular Wireless Networks in the Upper Mid-Band. IEEE Open J. Commun. Soc. 2024, 5, 2058–2075. [Google Scholar] [CrossRef]
- The White House. National Spectrum Strategy; The White House: Washington, DC, USA, 2023. [Google Scholar]
- Restuccia, F.; Melodia, T. Deep Learning at the Physical Layer: System Challenges and Applications to 5G and Beyond. IEEE Commun. Mag. 2020, 58, 58–64. [Google Scholar] [CrossRef]
- Triaridis, K.; Doumanidis, C.; Chatzidiamantis, N.D.; Karagiannidis, G.K. MM-Net: A Multi-Modal Approach towards Automatic Modulation Classification. IEEE Commun. Lett. 2023, 28, 328–331. [Google Scholar] [CrossRef]
- Baldesi, L.; Restuccia, F.; Melodia, T. ChARM: NextG Spectrum Sharing through Data-Driven Real-Time O-RAN Dynamic Control. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), London, UK, 2–5 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 240–249. [Google Scholar]
- Zhang, L.; Xiao, M.; Wu, G.; Alam, M.; Liang, Y.C.; Li, S. A Survey of Advanced Techniques for Spectrum Sharing in 5G Networks. IEEE Wirel. Commun. 2017, 24, 44–51. [Google Scholar] [CrossRef]
- Hu, F.; Chen, B.; Zhu, K. Full Spectrum Sharing in Cognitive Radio Networks toward 5G: A Survey. IEEE Access 2018, 6, 15754–15776. [Google Scholar] [CrossRef]
- Shokri-Ghadikolaei, H.; Boccardi, F.; Fischione, C.; Fodor, G.; Zorzi, M. Spectrum Sharing in mmWave Cellular Networks via Cell Association, Coordination, and Beamforming. IEEE J. Sel. Areas Commun. 2016, 34, 2902–2917. [Google Scholar] [CrossRef]
- Lv, L.; Chen, J.; Ni, Q.; Ding, Z.; Jiang, H. Cognitive Non-Orthogonal Multiple Access with Cooperative Relaying: A New Wireless Frontier for 5G Spectrum Sharing. IEEE Commun. Mag. 2018, 56, 188–195. [Google Scholar] [CrossRef]
- Agarwal, S.; De, S. eDSA: Energy-efficient Dynamic Spectrum Access Protocols for Cognitive Radio Networks. IEEE Trans. Mob. Comput. 2016, 15, 3057–3071. [Google Scholar] [CrossRef]
- Chiwewe, T.M.; Hancke, G.P. Fast Convergence Cooperative Dynamic Spectrum Access for Cognitive Radio Networks. IEEE Trans. Ind. Inform. 2017, 14, 3386–3394. [Google Scholar] [CrossRef]
- Chang, H.H.; Song, H.; Yi, Y.; Zhang, J.; He, H.; Liu, L. Distributive Dynamic Spectrum Access through Deep Reinforcement Learning: A Reservoir Computing-based Approach. IEEE Internet Things J. 2018, 6, 1938–1948. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Nguyen, B.T.; Dong, T.Q.; Ngo, D.T.; Nguyen, T.A. Deep Q-Learning with Multiband Sensing for Dynamic Spectrum Access. In Proceedings of the IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul, Republic of Korea, 22–25 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Naparstek, O.; Cohen, K. Deep Multi-user Reinforcement Learning for Distributed Dynamic Spectrum Access. IEEE Trans. Wirel. Commun. 2019, 18, 310–323. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Gomes, P.H.; Krishnamachari, B. Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 257–265. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, T.; Liew, S.C. Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks. IEEE J. Sel. Areas Commun. 2019, 37, 1277–1290. [Google Scholar] [CrossRef]
- Reston, V.A. Ligado Networks Sues U.S. Government for Unlawful and Uncompensated Taking of Ligado’s Exclusive FCC-Licensed Spectrum. 2023. Available online: https://ligado.com/press/ligado-networks-sues-u-s-government-for-unlawful-and-uncompensated-taking-of-ligados-exclusive-fcc-licensed-spectrum/ (accessed on 28 May 2024).
- Barden, S.; Dewdney, P.; Friesen, R.; Murowinski, R.; Savanandam, S. ATD Strategic R&D Review Report—Signal Processing Portfolio; Herzberg Astronomy and Astrophysics Research Centre-National Research Council Canada: Victoria, BC, Canada, 2022. [Google Scholar]
- FCC Spectrum Policy Task Force. Report of the Spectrum Efficiency Working Group, Nov. 2002; FCC: Washington, DC, USA, 2024. [Google Scholar]
- Mitola, J.; Maguire, G. Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef]
- Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 2005, 23, 201–220. [Google Scholar] [CrossRef]
- Liang, Y.C.; Chen, K.C.; Li, G.Y.; Mahonen, P. Cognitive radio networking and communications: An overview. IEEE Trans. Veh. Technol. 2011, 60, 3386–3407. [Google Scholar] [CrossRef]
- Wang, B.; Liu, K.R. Advances in cognitive radio networks: A survey. IEEE J. Sel. Top. Signal Process. 2011, 5, 5–23. [Google Scholar] [CrossRef]
- Talebi, S.P. Primary service outage and secondary service performance in cognitive radio networks. Wirel. Commun. Mob. Comput. 2015, 15, 1982–1990. [Google Scholar] [CrossRef]
- Zhao, Q.; Sadler, B.M. A Survey of Dynamic Spectrum Access. IEEE Signal Process. Mag. 2007, 24, 79–89. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, K.R. Dynamic Spectrum Sharing: A Game Theoretical Overview. IEEE Commun. Mag. 2007, 45, 88–94. [Google Scholar] [CrossRef]
- Bhattarai, S.; Park, J.M.J.; Gao, B.; Bian, K.; Lehr, W. An Overview of Dynamic Spectrum Sharing: Ongoing Initiatives, Challenges, and a Roadmap for Future Research. IEEE Trans. Cogn. Commun. Netw. 2016, 2, 110–128. [Google Scholar] [CrossRef]
- Zeng, Y.; Liang, Y.C.; Zhang, R. Blindly Combined Energy Detection for Spectrum Sensing in Cognitive Radio. IEEE Signal Process. Lett. 2008, 15, 649–652. [Google Scholar] [CrossRef]
- Ling, X.; Wu, B.; Wen, H.; Ho, P.H.; Bao, Z.; Pan, L. Adaptive Threshold Control for Energy Detection Based Spectrum Sensing in Cognitive Radios. IEEE Wirel. Commun. Lett. 2012, 1, 448–451. [Google Scholar] [CrossRef]
- Ranjan, A.; Anurag; Singh, B. Design and analysis of spectrum sensing in cognitive radio based on energy detection. In Proceedings of the International Conference on Signal and Information Processing, Nanded, India, 6–8 October 2016; pp. 1–5.
- Arjoune, Y.; Mrabet, Z.E.; Ghazi, H.E.; Tamtaoui, A. Spectrum sensing: Enhanced energy detection technique based on noise measurement. In Proceedings of the IEEE Annual Computing and Communication Workshop and Conference, Las Vegas, NV, USA, 8–10 January 2018; pp. 828–834. [Google Scholar]
- Jiang, C.; Li, Y.; Bai, W.; Yang, Y.; Hu, J. Statistical matched filter based robust spectrum sensing in noise uncertainty environment. In Proceedings of the International Conference on Communication Technology, Chengdu, China, 9–11 November 2012; pp. 1209–1213. [Google Scholar]
- Zhang, X.; Chai, R.; Gao, F. Matched filter based spectrum sensing and power level detection for cognitive radio network. In Proceedings of the IEEE Global Conference on Signal and Information Processing, Atlanta, GA, USA, 3–5 December 2014; pp. 1267–1270. [Google Scholar]
- Lv, Q.; Gao, F. Matched filter based spectrum sensing and power level recognition with multiple antennas. In Proceedings of the IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, China, 12–15 July 2015; pp. 305–309. [Google Scholar]
- Ilyas, I.; Paul, S.; Rahman, A.; Kundu, R.K. Comparative evaluation of cyclostationary detection based cognitive spectrum sensing. In Proceedings of the IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY, USA, 20–22 October 2016; pp. 1–7. [Google Scholar]
- Cohen, D.; Eldar, Y.C. Compressed cyclostationary detection for Cognitive Radio. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 3509–3513. [Google Scholar]
- Zeng, Y.; Liang, Y.C. Spectrum-Sensing Algorithms for Cognitive Radio Based on Statistical Covariances. IEEE Trans. Veh. Technol. 2009, 58, 1804–1815. [Google Scholar] [CrossRef]
- Zeng, Y.; Liang, Y.C. Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 2009, 57, 1784–1793. [Google Scholar] [CrossRef]
- Zayen, B.; Hayar, A.; Kansanen, K. Blind Spectrum Sensing for Cognitive Radio Based on Signal Space Dimension Estimation. In Proceedings of the 2009 IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–5. [Google Scholar]
- Farhang-Boroujeny, B. Filter Bank Spectrum Sensing for Cognitive Radios. IEEE Trans. Signal Process. 2008, 56, 1801–1811. [Google Scholar] [CrossRef]
- Quan, Z.; Cui, S.; Sayed, A.H.; Poor, H.V. Optimal Multiband Joint Detection for Spectrum Sensing in Cognitive Radio Networks. IEEE Trans. Signal Process. 2009, 57, 1128–1140. [Google Scholar] [CrossRef]
- Raghu, I.; Chowdary, S.S.; Elias, E. Efficient spectrum sensing for Cognitive Radio using Cosine Modulated Filter Banks. In Proceedings of the IEEE Region 10 Conference, Singapore, 22–25 November 2016; pp. 2086–2089. [Google Scholar]
- Kumar, A.; Saha, S.; Bhattacharya, R. Improved wavelet transform based edge detection for wide band spectrum sensing in Cognitive Radio. In Proceedings of the USNC-URSI Radio Science Meeting, Fajardo, Puerto Rico, 26 June–1 July 2016; pp. 21–22. [Google Scholar]
- Polo, Y.L.; Wang, Y.; Pandharipande, A.; Leus, G. Compressive wide-band spectrum sensing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 2337–2340. [Google Scholar]
- Arjoune, Y.; Kaabouch, N. Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach. Sensors 2018, 18, 1839. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chang, B.; Wang, S.; Liu, A.; Zeng, F.; Luo, G. Dynamic Compressive Wide-Band Spectrum Sensing Based on Channel Energy Reconstruction in Cognitive Internet of Things. IEEE Trans. Ind. Inform. 2018, 14, 2598–2607. [Google Scholar] [CrossRef]
- Yang, L.; Fang, J.; Duan, H.; Li, H. Fast Compressed Power Spectrum Estimation: Toward a Practical Solution for Wideband Spectrum Sensing. IEEE Trans. Wirel. Commun. 2020, 19, 520–532. [Google Scholar] [CrossRef]
- Ding, G.; Wu, Q.; Yao, Y.D.; Wang, J.; Chen, Y. Kernel-Based Learning for Statistical Signal Processing in Cognitive Radio Networks: Theoretical Foundations, Example Applications, and Future Directions. IEEE Signal Process. Mag. 2013, 30, 126–136. [Google Scholar] [CrossRef]
- Thilina, K.M.; Choi, K.W.; Saquib, N.; Hossain, E. Machine Learning Techniques for Cooperative Spectrum Sensing in Cognitive Radio Networks. IEEE J. Sel. Areas Commun. 2013, 31, 2209–2221. [Google Scholar] [CrossRef]
- Mikaeil, A.M.; Guo, B.; Wang, Z. Machine Learning to Data Fusion Approach for Cooperative Spectrum Sensing. In Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Shanghai, China, 13–15 October 2014; pp. 429–434. [Google Scholar]
- Ghazizadeh, E.; Nikpour, B.; Moghadam, D.A.; Nezamabadi-pour, H. A PSO-based weighting method to enhance machine learning techniques for cooperative spectrum sensing in CR networks. In Proceedings of the Conference on Swarm Intelligence and Evolutionary Computation, Bam, Iran, 9–11 March 2016; pp. 113–118. [Google Scholar]
- Khalfi, B.; Zaid, A.; Hamdaoui, B. When machine learning meets compressive sampling for wideband spectrum sensing. In Proceedings of the International Wireless Communications and Mobile Computing Conference, Valencia, Spain, 26–30 June 2017; pp. 1120–1125. [Google Scholar]
- Lee, W.; Kim, M.; Cho, D.H. Deep Cooperative Sensing: Cooperative Spectrum Sensing Based on Convolutional Neural Networks. IEEE Trans. Veh. Technol. 2019, 68, 3005–3009. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Liu, X.; Liang, Y.C. Deep CM-CNN for Spectrum Sensing in Cognitive Radio. IEEE J. Sel. Areas Commun. 2019, 37, 2306–2321. [Google Scholar] [CrossRef]
- Soni, B.; Patel, D.K.; López-Benítez, M. Long Short-Term Memory Based Spectrum Sensing Scheme for Cognitive Radio Using Primary Activity Statistics. IEEE Access 2020, 8, 97437–97451. [Google Scholar] [CrossRef]
- Peng, Q.; Gilman, A.; Vasconcelos, N.; Cosman, P.C.; Milstein, L.B. Robust Deep Sensing through Transfer Learning in Cognitive Radio. IEEE Wirel. Commun. Lett. 2020, 9, 38–41. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Chen, X.; Cai, Z.; Tian, Z. Spectrum Transformer: An Attention-Based Wideband Spectrum Detector. IEEE Trans. Wirel. Commun. 2024, 1. [Google Scholar] [CrossRef]
- Sarikhani, R.; Keynia, F. Cooperative Spectrum Sensing Meets Machine Learning: Deep Reinforcement Learning Approach. IEEE Commun. Lett. 2020, 24, 1459–1462. [Google Scholar] [CrossRef]
- Cai, P.; Zhang, Y.; Pan, C. Coordination Graph-Based Deep Reinforcement Learning for Cooperative Spectrum Sensing Under Correlated Fading. IEEE Wirel. Commun. Lett. 2020, 9, 1778–1781. [Google Scholar] [CrossRef]
- Gao, A.; Du, C.; Ng, S.X.; Liang, W. A Cooperative Spectrum Sensing with Multi-Agent Reinforcement Learning Approach in Cognitive Radio Networks. IEEE Commun. Lett. 2021, 25, 2604–2608. [Google Scholar] [CrossRef]
- Ngo, Q.T.; Jayawickrama, B.A.; He, Y.; Dutkiewicz, E. Multi-Agent DRL-Based RIS-Assisted Spectrum Sensing in Cognitive Satellite–Terrestrial Networks. IEEE Wirel. Commun. Lett. 2023, 12, 2213–2217. [Google Scholar] [CrossRef]
- Ali, A.; Hamouda, W. Advances on Spectrum Sensing for Cognitive Radio Networks: Theory and Applications. IEEE Commun. Surv. Tutor. 2017, 19, 1277–1304. [Google Scholar] [CrossRef]
- Arjoune, Y.; Kaabouch, N. A Comprehensive Survey on Spectrum Sensing in Cognitive Radio Networks: Recent Advances, New Challenges, and Future Research Directions. Sensors 2019, 19, 126. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Z. A Review of Research on Spectrum Sensing Based on Deep Learning. Electronics 2023, 12, 4514. [Google Scholar] [CrossRef]
- Wijenayake, C.; Madanayake, A.; Kota, J.; Bruton, L. Space-Time Spectral White Spaces in Cognitive Radio: Theory, Algorithms, and Circuits. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 640–653. [Google Scholar] [CrossRef]
- Madanayake, A.; Wijenayake, C.; Tran, N.; Cooklev, T.; Hum, S.; Bruton, L.T. Directional spectrum sensing using tunable multi-D space-time discrete filters. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, San Francisco, CA, USA, 25–28 June 2012; pp. 1–6. [Google Scholar]
- Wijenayake, C.; Madanayake, A.; Bruton, L.T.; Devabhaktuni, V. DOA-estimation and source-localization in CR-networks using steerable 2-D IIR beam filters. In Proceedings of the IEEE International Symposium on Circuits and Systems, Beijing, China, 19–23 May 2013; pp. 65–68. [Google Scholar]
- Gunaratne, T.K.; Bruton, L.T. Adaptive complex-coefficient 2D FIR trapezoidal filters for broadband beamforming in cognitive radio systems. Circuits Syst. Signal Process. 2011, 30, 587–608. [Google Scholar] [CrossRef]
- Wilcox, D.; Tsakalaki, E.; Kortun, A.; Ratnarajah, T.; Papadias, C.B.; Sellathurai, M. On Spatial Domain Cognitive Radio Using Single-Radio Parasitic Antenna Arrays. IEEE J. Sel. Areas Commun. 2013, 31, 571–580. [Google Scholar] [CrossRef]
- Qian, R.; Sellathurai, M.; Ratnarajah, T. Directional spectrum sensing for cognitive radio using ESPAR arrays with a single RF chain. In Proceedings of the 2014 European Conference on Networks and Communications (EuCNC), Bologna, Italy, 23–26 June 2014; pp. 1–5. [Google Scholar]
- Yazdani, H.; Vosoughi, A. On cognitive radio systems with directional antennas and imperfect spectrum sensing. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 3589–3593. [Google Scholar]
- Pulipati, S.; Ariyarathna, V.; Edussooriya, C.U.S.; Wijenayake, C.; Wang, X.; Madanayake, A. Real-Time FPGA-Based Multi-Beam Directional Sensing of 2.4 GHz ISM RF Sources. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; pp. 129–134. [Google Scholar]
- Richard Thompson, A.; Gergely, T.E.; Vanden Bout, P.A. Interference and Radioastronomy. Phys. Today 1991, 44, 41–49. [Google Scholar] [CrossRef]
- Science Goals-Square Kilometre Array Observatory. Available online: https://www.skao.int/en/explore/science-goals (accessed on 27 May 2024).
- Carpenter, J.; Brogan, C.; Iono, D.; Mroczkowski, T. The ALMA2030 Wideband Sensitivity Upgrade. arXiv 2022, arXiv:2211.00195. [Google Scholar]
- Science with a Next-Generation very Large Array. Available online: https://ngvla.nrao.edu/page/science (accessed on 27 May 2024).
- Sihlangu, I.; Oozeer, N.; Bassett, B.A. Nature and Evolution of UHF and L-band Radio FrequencyInterference at the MeerKAT Radio Telescope. In Proceedings of the RFI Workshop 2022, European Centre for Medium-Range Weather Forecasts (ECMRWF), Online, 14–18 February 2022. [Google Scholar]
- Galt, J. Contamination from satellites. Nature 1990, 345, 483. [Google Scholar] [CrossRef]
- De Pree, C.G.; Anderson, C.R.; Zheleva, M. Astronomy Is under Threat by Radio Interference from Satellites—Here’s What Can Be Done about It. 2023. Available online: https://www.weforum.org/agenda/2023/03/astronomy-radio-interference-satellites-technology/ (accessed on 27 May 2024).
- Preferred Frequency Bands for Radio Astronomical Measurements below 1 THz. Recommendation ITU-R RA.314-11, International Telecommunication Union—Radiocommunication Sector. 2023. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/ra/R-REC-RA.314-11-202312-I!!PDF-E.pdf (accessed on 27 May 2024).
- Protection Criteria Used for Radio Astronomical Measurements. Recommendation ITU-R RA.769-2, International Telecommunication Union—Radiocommunication Sector. 2003. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/ra/R-REC-RA.769-2-200305-I!!PDF-E.pdf (accessed on 27 May 2024).
- Fridman, P.A.; Baan, W.A. RFI mitigation methods in radio astronomy. Astron. Astrophys. 2001, 378, 327–344. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, R.; Zhang, Q.; Wang, R.; Zhang, H.; Wen, Z. Fusion Method of RFI Detection, Localization, and Suppression by Combining One-Dimensional and Two-Dimensional SyntheticAperture Radiometers. Remote Sens. 2024, 16, 667. [Google Scholar] [CrossRef]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W.; Buck, J. Discrete-Time Signal Processing; Prentice Hall International Editions; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Baghaie, R.; Dimitrov, V. DHT algorithm based on encoding algebraic integers. Electron. Lett. 1999, 35, 1303–1305. [Google Scholar] [CrossRef]
- Britanak, V.; Yip, P.; Rao, K.R. Discrete Cosine and Sine Transforms; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Feig, E.; Winograd, S. On the multiplicative complexity of discrete cosine transforms. IEEE Trans. Inf. Theory 1992, 38, 1387–1391. [Google Scholar] [CrossRef]
- Malvar, H.S.; Hallapuro, A.; Karczewicz, M.; Kerofsky, L. Low-complexity transform and quantization in H.264/AVC. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 598–603. [Google Scholar] [CrossRef]
- Winograd, S. Arithmetic Complexity of Computations; CBMS-NSF Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1980; Volume 33. [Google Scholar]
- Winograd, S. On Computing the Discrete Fourier Transform. Math. Comput. 1978, 32, 175–199. [Google Scholar] [CrossRef]
- Heideman, M.T. Multiplicative Complexity, Convolution, and the DFT; Springer: Heidelberg, Germany, 1988. [Google Scholar]
- Oppenheim, A.V.; Verghese, G.C. Signals, Systems & Inference. In Prentice-Hall Signal Processing Series; Pearson: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- Cintra, R.J. An integer approximation method for discrete sinusoidal transforms. Circuits Syst. Signal Process. 2011, 30, 1481–1501. [Google Scholar] [CrossRef]
- Suárez Villagrán, D.M. Discrete Fourier Transform Approximations with Applications in Detection and Estimation. Master’s Thesis, Universidade Federal de Pernambuco, Recife, Brazil, 2015. [Google Scholar]
- Madanayake, A.; Ariyarathna, V.; Madishetty, S.; Pulipati, S.; Cintra, R.J.; Coelho, D.; Oliveira, R.; Bayer, F.M.; Belostotski, L.; Mandal, S.; et al. Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz. IEEE Trans. Antennas Propag. 2020, 68, 900–912. [Google Scholar] [CrossRef]
- Madanayake, A.; Cintra, R.J.; Akram, N.; Ariyarathna, V.; Mandal, S.; Coutinho, V.A.; Bayer, F.M.; Coelho, D.; Rappaport, T.S. Fast Radix-32 Approximate DFTs for 1024-Beam Digital RF Beamforming. IEEE Access 2020, 8, 96613–96627. [Google Scholar] [CrossRef]
- Blahut, R.E. Fast Algorithms for Signal Processing; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- The Collaboration for Astronomy Signal Processing and Electronics Research. 2024. Available online: https://casper.berkeley.edu/ (accessed on 23 May 2024).
- The CASPER Toolflow. GitHub. 2024. Available online: https://github.com/casper-astro/mlib_devel/ (accessed on 24 May 2024).
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kulasekera, S.; Madanayake, A.; Suarez, D.; Cintra, R.J.; Bayer, F.M. Multi-beam receiver apertures using multiplierless 8-point approximate DFT. In Proceedings of the 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015; pp. 1244–1249. [Google Scholar] [CrossRef]
- Zhao, H.; Madanayake, A.; Cintra, R.J.; Mandal, S. Analog Current-Mode 8-Point Approximate-DFT Multi-Beamformer with 4.7 Gbps Channel Capacity. IEEE Access 2023, 11, 53716–53735. [Google Scholar] [CrossRef]
- Kulasekera, S.; Madanayake, A.; Wijenayake, C.; Bayer, F.M.; Suarez, D.; Cintra, R.J. Multi-beam 8 × 8 RF aperture digital beamformers using multiplierless 2-D FFT approximations. In Proceedings of the 2015 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 7–8 April 2015; pp. 260–264. [Google Scholar] [CrossRef]
- Ariyarathna, V.; Madanayake, A.; Tang, X.; Coelho, D.; Cintra, R.J.; Belostotski, L.; Mandal, S.; Rappaport, T.S. Analog Approximate-FFT 8/16-Beam Algorithms, Architectures and CMOS Circuits for 5G Beamforming MIMO Transceivers. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 466–479. [Google Scholar] [CrossRef]
Method | Real Multiplications | Real Additions |
---|---|---|
Exact 32-point DFT () | 1408 | 1666 |
Radix-2 Cooley–Tukey FFT () [99] | 88 | 408 |
Approximate DFT () [96] | 0 | 1282 |
Fast algorithm for () [97] | 0 | 144 |
Operation | ||||||||
---|---|---|---|---|---|---|---|---|
Real multiplications | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Real additions | 30 | 30 | 14 | 14 | 30 | 14 | 12 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madanayake, A.; Lawrance, K.; Kumarasiri, B.U.; Sivasankar, S.; Gunaratne, T.; Edussooriya, C.U.S.; Cintra, R.J. Design of Multichannel Spectrum Intelligence Systems Using Approximate Discrete Fourier Transform Algorithm for Antenna Array-Based Spectrum Perception Applications. Algorithms 2024, 17, 338. https://doi.org/10.3390/a17080338
Madanayake A, Lawrance K, Kumarasiri BU, Sivasankar S, Gunaratne T, Edussooriya CUS, Cintra RJ. Design of Multichannel Spectrum Intelligence Systems Using Approximate Discrete Fourier Transform Algorithm for Antenna Array-Based Spectrum Perception Applications. Algorithms. 2024; 17(8):338. https://doi.org/10.3390/a17080338
Chicago/Turabian StyleMadanayake, Arjuna, Keththura Lawrance, Bopage Umesha Kumarasiri, Sivakumar Sivasankar, Thushara Gunaratne, Chamira U. S. Edussooriya, and Renato J. Cintra. 2024. "Design of Multichannel Spectrum Intelligence Systems Using Approximate Discrete Fourier Transform Algorithm for Antenna Array-Based Spectrum Perception Applications" Algorithms 17, no. 8: 338. https://doi.org/10.3390/a17080338
APA StyleMadanayake, A., Lawrance, K., Kumarasiri, B. U., Sivasankar, S., Gunaratne, T., Edussooriya, C. U. S., & Cintra, R. J. (2024). Design of Multichannel Spectrum Intelligence Systems Using Approximate Discrete Fourier Transform Algorithm for Antenna Array-Based Spectrum Perception Applications. Algorithms, 17(8), 338. https://doi.org/10.3390/a17080338