Advanced Detection of Abnormal ECG Patterns Using an Optimized LADTree Model with Enhanced Predictive Feature: Potential Application in CKD
Abstract
:1. Introduction
2. Literature Study
3. Research Design and Procedure
3.1. Data Acquisition and Preprocessing
3.2. Feature Selection
- Let F represent the collection of all possible features.
- F1, F2, and F3 are the feature subsets determined by the three distinct feature selection algorithms.
- Fselected is the final subset of features selected using the majority vote method.
3.3. ML Models, Training, and Performance Evaluation
3.4. Classification Task Definition
3.5. Proposed Methodology (LADTree)
Algorithm 1: LADTree |
Input: - Dataset: A set of instances with features and class labels Output: - Decision tree model for classification 1. Start 2. Check if the stopping criteria for tree construction are met for the current dataset. 3. If stopping criteria are met: a. Create a leaf node for the current dataset containing the majority class. b. Return the created leaf node. 4. Else: a. Find the best split for the current dataset using logistic regression. b. If no optimal split is found: i. Create a leaf node for the current dataset containing the majority class. ii. Return the created leaf node. c. Else: i. Split the dataset into left and right subsets based on the best split. ii. Recursively apply the LADTree algorithm to the left and right subsets. iii. Create a decision node with the best split and its corresponding child nodes. iv. Return the created decision node. 5. End |
Algorithm 2: StoppingCriteria(Dataset) |
1. Determine the stopping criteria for tree construction (e.g., maximum depth, minimum samples per node). 2. Return true if the stopping criteria are met; otherwise, return false. Function: FindBestSplit(Dataset) 1. Initialize best_split as null and best_deviance as infinity. 2. For each feature in the dataset: a. For each value in the feature: i. Split the dataset into left and right subsets. ii. Calculate the deviance using logistic regression. iii. If the calculated deviance is less than the best_deviance: A. Update best_deviance with the calculated deviance. B. Update best_split with the current feature and value. 3. Return the best_split. Function: SplitDataset(Dataset, feature, value) 1. Initialize left_subset and right_subset as empty subsets. 2. For each instance in the dataset: a. If the feature value of the instance is less than or equal to the given value: i. Add the instance to the left_subset. b. Else: i. Add the instance to the right_subset. 3. Return left_subset and right_subset. Function: CalculateDeviance(left_subset, right_subset) 1. Calculate the deviance using logistic regression models based on the given subsets. 2. Return the calculated deviance. |
4. Results Analysis and Discussion
4.1. Scenario 1
4.2. Scenario 2
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rady, E.H.A.; Anwar, A.S. Prediction of kidney disease stages using data mining algorithms. Inform. Med. Unlocked 2019, 15, 100178. [Google Scholar] [CrossRef]
- Alshebly, O.Q.; Ahmed, R.M. Prediction and Factors Affecting of Chronic Kidney Disease Diagnosis using Artificial Neural Networks Model and Logistic Regression Model. Iraqi J. Stat. Sci. 2019, 16, 140–159. [Google Scholar]
- Ghosh, P.; Shamrat, F.M.J.M.; Shultana, S.; Afrin, S.; Anjum, A.A.; Khan, A.A. Optimization of prediction method of chronic kidney disease using machine learning algorithm. In Proceedings of the 2020 15th international joint symposium on artificial intelligence and natural language processing (iSAI-NLP), Bangkok, Thailand, 18–20 November 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Murat, F.; Yildirim, O.; Talo, M.; Baloglu, U.B.; Demir, Y.; Acharya, U.R. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Comput. Biol. Med. 2020, 120, 103726. [Google Scholar] [CrossRef]
- Gilani, V.N.M.; Hosseinian, S.M.; Ghasedi, M.; Nikookar, M. Data-driven urban traffic accident analysis and prediction using logit and machine learning-based pattern recognition models. Math. Probl. Eng. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Aggarwal, R.; Podder, P.; Khamparia, A. Ecg classification and analysis for heart disease prediction using xai-driven machine learning algorithms. In Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligence (RAI); Springer: Berlin/Heidelberg, Germany, 2022; pp. 91–103. [Google Scholar]
- McClellan, W.M. Epidemiology and risk factors for chronic kidney disease. Med. Clin. N. Am. 2005, 89, 419–445. [Google Scholar] [CrossRef] [PubMed]
- Revathy, S.; Bharathi, B.; Jeyanthi, P.; Ramesh, M. Chronic kidney disease prediction using machine learning models. Int. J. Eng. Adv. Technol. 2019, 9, 6364–6367. [Google Scholar] [CrossRef]
- Mulia, E.P.B.; Nugraha, R.A.; A’yun, M.Q.; Juwita, R.R.; Yofrido, F.M.; Julario, R.; Alkaff, F.F. Electrocardiographic abnormalities among late-stage non-dialysis chronic kidney disease patients. J. Basic. Clin. Physiol. Pharmacol. 2020, 32, 155–162. [Google Scholar] [CrossRef]
- Junho, C.V.C.; Trentin-Sonoda, M.; Panico, K.; Dos Santos, R.S.N.; Abrahão, M.V.; Vernier, I.C.S.; Fürstenau, C.R.; Carneiro-Ramos, M.S. Cardiorenal syndrome: Long road between kidney and heart. Heart Fail. Rev. 2022, 27, 2137–2153. [Google Scholar] [CrossRef]
- Nusinovici, S.; Tham, Y.C.; Yan, M.Y.C.; Ting, D.S.W.; Li, J.; Sabanayagam, C.; Yin, T.; Cheng, C. Logistic regression was as good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [Google Scholar] [CrossRef]
- Sawhney, R.; Malik, A.; Sharma, S.; Narayan, V. A comparative assessment of artificial intelligence models used for early prediction and evaluation of chronic kidney disease. Decis. Anal. J. 2023, 6, 100169. [Google Scholar] [CrossRef]
- Singh, A.K.; Krishnan, S. ECG Signal Feature Extraction Trends in Methods and Applications. Biomed. Eng. Online 2023, 22, 22. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.M.; Siddiqua, S.; Rabby, S.E.; Hasan, N.; Imam, M.H. Early Detection of Kidney Disease Using ECG Signals Through Machine Learning Based Modelling. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019; pp. 319–323. [Google Scholar]
- Khan, B.; Naseem, R.; Muhammad, F.; Abbas, G.; Kim, S. An empirical evaluation of machine learning techniques for chronic kidney disease prophecy. IEEE Access 2020, 8, 55012–55022. [Google Scholar] [CrossRef]
- Elhoseny, M.; Shankar, K.; Uthayakumar, J. Intelligent Diagnostic Prediction and Classification System for Chronic Kidney Disease. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Gudeti, B.; Mishra, S.; Malik, S.; Fernandez, T.F.; Tyagi, A.K.; Kumari, S. A Novel Approach to Predict Chronic Kidney Disease using Machine Learning Algorithms. In Proceedings of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020; pp. 1630–1635. [Google Scholar] [CrossRef]
- Battineni, G.; Sagaro, G.G.; Chinatalapudi, N.; Amenta, F. Applications of machine learning predictive models in the chronic disease diagnosis. J. Pers. Med. 2020, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Ajam, F.; Patel, S.; Alrefaee, A. Cardiac arrhythmias in patients with end stage renal disease (ESRD) on hemodialysis; recent update and brief literature review. Am J Int Med. 2019, 7, 22–26. [Google Scholar] [CrossRef]
- Buttar, H.S.; Li, T.; Ravi, N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229–249. [Google Scholar]
- Binsawad, M. Enhancing kidney disease prediction with optimized forest and ECG signals data. Heliyon 2024, 10, e30792. [Google Scholar] [CrossRef]
- Erturan, A.M.; Karaduman, G.; Durmaz, H. Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection. J. Hazard. Mater. 2023, 455, 131616. [Google Scholar] [CrossRef]
- Mishra, P.; Varadharajan, V.; Tupakula, U.; Pill, E.S. A Detailed Investigation and Analysis of using Machine Learning Techniques for Intrusion Detection. IEEE Commun. Surv. Tutorials 2018, 21, 686–728. [Google Scholar] [CrossRef]
- Abdulhammed, R.; Musafer, H.; Alessa, A.; Faezipour, M.; Abuzneid, A. Features Dimensionality Reduction Approaches for Machine Learning Based Network Intrusion Detection. Electronics 2019, 8, 322. [Google Scholar] [CrossRef]
- Iqbal, A.; Aftab, S.; Ali, U.; Nawaz, Z.; Sana, L.; Ahmad, M.; Husen, A. Performance analysis of machine learning techniques on software defect prediction using NASA datasets. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 300–308. [Google Scholar] [CrossRef]
- Balogun, A.O.; Bajeh, A.O.; Orie, V.A.; Yusuf-asaju, A.W. Software Defect Prediction Using Ensemble Learning: An ANP Based Evaluation Method. J. Eng. Technol. 2018, 3, 50–55. [Google Scholar] [CrossRef]
- Nahar, N.; Ara, F. Liver Disease Prediction by Using Different Decision Tree Techniques. Int. J. Data Min. Knowl. Manag. Process 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Naseem, R.; Khan, B.; Shah, M.A.; Wakil, K.; Khan, A.; Alosaimi, W.; Uddin, M.I.; Alouffi, B. Performance Assessment of Classification Algorithms on Early Detection of Liver Syndrome. J. Healthc. Eng. 2020, 2020, 6680002. [Google Scholar] [CrossRef]
- Naseem, R.; Khan, B.; Ahmad, A.; Almogren, A.; Jabeen, S.; Hayat, B.; Shah, M.A. Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects. Complexity 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Salo, F.; Nassif, A.B.; Essex, A. Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection. Comput. Netw. 2019, 148, 164–175. [Google Scholar] [CrossRef]
- Khan, B.; Naseem, R.; Shah, M.A.; Wakil, K.; Khan, A.; Uddin, M.I.; Mahmoud, M. Software Defect Prediction for Healthcare Big Data: An Empirical Evaluation of Machine Learning Techniques. J. Healthc. Eng. 2021, 2021, 8899263. [Google Scholar] [CrossRef]
- Obiedat, R.; Qaddoura, R.; Ala’M, A.Z.; Al-Qaisi, L.; Harfoushi, O.; Alrefai, M.A.; Faris, H. Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based approach in an imbalanced data distribution. IEEE Access 2022, 10, 22260–22273. [Google Scholar] [CrossRef]
- Zamir, A.; Khan, H.U.; Iqbal, T.; Yorsaf, N.; Aslam, F.; Anjum, A.; Hamdani, M. Phishing web site detection using diverse machine learning algorithms. Electron. Libr. 2020, 38, 65–80. [Google Scholar] [CrossRef]
- Irfan, M.; Ullah, K.; Muhammad, F.; Khan, S.; Althobiani, F.; Usman, M.; Alshareef, M.; Alghaffari, S.; Rahman, S. Automatic Detection of Outliers in Multi-Channel EMG Signals Using MFCC and SVM. Intell. Autom. Soft Comput. 2023, 36, 169–181. [Google Scholar] [CrossRef]
- Mehr, S.Y.; Ramamurthy, B. An SVM based DDoS attack detection method for Ryu SDN controller. In Proceedings of the 15th International Conference on Emerging Networking Experiments and Technologies, Orlando, FL, USA, 9–12 December 2019; pp. 72–73. [Google Scholar]
- Khan, S.; Ullah, R.; Khan, A.; Wahab, N.; Bilal, M.; Ahmed, M. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM). Biomed. Opt. Express 2016, 7, 2249. [Google Scholar] [CrossRef]
- Pham, B.T. A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide Susceptibility. J. Geol. Soc. India 2018, 91, 355–362. [Google Scholar] [CrossRef]
- Alroobaea, R. An Empirical combination of Machine Learning models to Enhance author profiling performance. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 2130–2137. [Google Scholar] [CrossRef]
- Saritas, M.M.; Yasar, A. Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification. Int. J. Intell. Syst. Appl. Eng. 2019, 7, 88–91. [Google Scholar] [CrossRef]
- Holmstrom, L.; Christensen, M.; Yuan, N.; Hughes, J.W.; Theurer, J.; Jujjavarapu, M.; Fatehi, P.; Kwan, A.; Sandhu, R.K.; Ebinger, J.; et al. Deep learning based electrocardiographic screening for chronic kidney disease. Commun. Med. 2023, 3, 73. [Google Scholar] [CrossRef] [PubMed]
- Holmstrom, L.; Christensen, M.; Yuan, N.; Hughes, J.W.; Theurer, J.; Jujjavarapu, M.; Fatehi, P.; Kwan, A.; Sandhu, R.K.; Ebinger, J.; et al. Deep learning based electrocardiographic screening for chronic kidney disease. medRxiv 2023, 2022-03. [Google Scholar] [CrossRef]
- Holmes, G.; Pfahringer, B.; Kirkby, R.; Frank, E.; Hall, M. Multiclass alternating decision trees. Lect. Notes Comput. Sci. 2002, 2430, 161–172. [Google Scholar] [CrossRef]
- Kalmegh, S.R. Comparative Analysis of WEKA Data Mining Algorithm RandomForest, RandomTree and LADTree for Classification of Indigenous News Data. Int. J. Emerg. Technol. Adv. Eng. 2008, 9001, 507–517. [Google Scholar]
- Raji, C.G.; Chandra, S.S.V. Graft survival prediction in liver transplantation using artificial neural network models. J. Comput. Sci. 2016, 16, 72–78. [Google Scholar] [CrossRef]
- Choudhury, S.; Bhowal, A. Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. In Proceedings of the 2015 International Congress on Information and Communication Technology, London, UK, 28–30 October 2015; pp. 89–95. [Google Scholar] [CrossRef]
S. No. | Class | Entries | Description |
---|---|---|---|
1 | Normal | 245 | Normal |
2 | VPC | 3 | Ventricular Premature Contraction (PVC) |
3 | IC-CAD | 44 | Ischemic changes (Coronary Artery Disease) |
4 | 1-DAVB | 0 | 1. degree Atrio-Ventricular block |
5 | LBBB | 9 | Left bundle branch block |
6 | SB | 25 | Sinus bradycardy |
7 | ST | 13 | Sinus tachycardy |
8 | AF | 5 | Atrial Fibrillation or Flutter |
9 | OIMI | 15 | Old Inferior Myocardial Infarction |
10 | LVH | 4 | Left ventricular hypertrophy |
11 | SPC | 2 | Supraventricular Premature Contraction |
12 | RBBB | 50 | Right bundle branch block |
13 | OAMI | 15 | Old Anterior Myocardial Infarction |
14 | 3-DAVB | 0 | 3. degree AV block |
15 | 2-DAVB | 0 | 2. degree AV block |
16 | Others | 22 | Others |
Attributes | Units | Description | Min | Max | Mean | StdDev |
---|---|---|---|---|---|---|
QRS_Duration | Milliseconds (ms) | Time taken for ventricular depolarization | 55 | 188 | 88.92 | 15.364 |
BN | Microvolts (µV) | Baseline Noise | 0 | 92 | 31.23 | 27.949 |
CJ | ms | Conduction Junctions | 0 | 88 | 7.478 | 15.359 |
DK | ms | Duration of K-wave | 0 | 132 | 6.327 | 20.984 |
DZ | ms | Delta Z (impedance change) | 0 | 96 | 3.814 | 16.325 |
EB | Count | Ectopic Beat | 0 | 112 | 41.681 | 16.425 |
EM | Arbitrary units (AU) | Ectopic Measure | 0 | 88 | 3.239 | 11.531 |
HR | Beats per minute (bpm) | Heart Rate | −3.9 | 6.4 | −1.144 | 1.116 |
IN | ms | Interval (possibly RR or QT interval) | −5.5 | 7 | 0.868 | 1.053 |
IV | ms | Intrinsic Variability | 0 | 19.2 | 0.318 | 1.49 |
JB | µV | Junctional Beat | −216 | 268.9 | −18.738 | 23.715 |
JO | µV | Junctional Origin | −32.9 | 0 | −0.654 | 3.414 |
JV | Meters per second (m/s) | Junctional Velocity | −11.8 | 18.8 | 3.895 | 2.991 |
JY | µV | Junctional Yield | −242.4 | 165.4 | −8.269 | 32.157 |
KS | Dimensionless | Kolmogorov-Smirnov (a statistical measure) | −5 | 8.3 | 1.722 | 1.708 |
LE | ms | Latency Event | −6 | 6 | 1.222 | 1.426 |
Search Method | Selected Features |
---|---|
PSO Search | AH, BO, BN, BV, CZ, CJ, DM, DK, DZ, DS, DO, EY, EM, EB, FT, FA, GO, GE, HR, HL, HT, IN, JD, JJ, JH, JB, JY, JP, JO, JV, KS, KH, KY, LE, r_wave, t_interval, qrs_duration = 37 |
Best First Search | AU, CJ, DK, DD, DA, DZ, DN, EB, HR, HJ, IV, IN, IT, IH, JV, JB, JY, KS, LE, LG, q-t_interval, heart_rate, qrs_duration, t_interval, T = 25 |
Harmony Search | BN, BI, BY, DK, DB, EF, EB, EN, EM, FC, FB, FO, GR, HR, HN, IV, IJ, JO, JB, KS, KO, KU = 22 |
Ending Operation | BN, CJ, DK, EB, LE, JO, JV, JY, IN, EM, DZ, IV, JB, KS, HR, qrs_duration = 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binsawad, M.; Khan, B. Advanced Detection of Abnormal ECG Patterns Using an Optimized LADTree Model with Enhanced Predictive Feature: Potential Application in CKD. Algorithms 2024, 17, 406. https://doi.org/10.3390/a17090406
Binsawad M, Khan B. Advanced Detection of Abnormal ECG Patterns Using an Optimized LADTree Model with Enhanced Predictive Feature: Potential Application in CKD. Algorithms. 2024; 17(9):406. https://doi.org/10.3390/a17090406
Chicago/Turabian StyleBinsawad, Muhammad, and Bilal Khan. 2024. "Advanced Detection of Abnormal ECG Patterns Using an Optimized LADTree Model with Enhanced Predictive Feature: Potential Application in CKD" Algorithms 17, no. 9: 406. https://doi.org/10.3390/a17090406
APA StyleBinsawad, M., & Khan, B. (2024). Advanced Detection of Abnormal ECG Patterns Using an Optimized LADTree Model with Enhanced Predictive Feature: Potential Application in CKD. Algorithms, 17(9), 406. https://doi.org/10.3390/a17090406