A New Generalized Chebyshev Matrix Algorithm for Solving Second-Order and Telegraph Partial Differential Equations
Abstract
:1. Introduction
- Establish the OMDs of the generalized CPs.
- Design a matrix algorithm for handling second-order PDEs with constant coefficients.
- Design a matrix algorithm for handling the telegraph equation.
- Investigate convergence analysis.
- Provide specific examples to demonstrate the practicality and accuracy of the used technique.
2. An Overview on the SGCPs
2.1. Some Fundamental Formulas of the SGCPs
2.2. The OMDs of the SGCPs
2.3. Function Approximation by the SGCPs
3. Treatment of the Second-Order PDEs with Constant Coefficients
4. Numerical Treatment of Telegraph Equation
5. The Error Bound
6. Numerical Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shearer, M.; Levy, R. Partial Differential Equations: An Introduction to Theory and Applications; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Selvadurai, A.P.S. Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poisson’s Equation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Guo, Y.; Cao, X.; Liu, B.; Gao, M. Solving partial differential equations using deep learning and physical constraints. Appl. Sci. 2020, 10, 5917. [Google Scholar] [CrossRef]
- Ahmad, H.; Akgül, A.; Khan, T.A.; Stanimirović, P.S.; Chu, Y.M. New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations. Complexity 2020, 2020, 8829017. [Google Scholar] [CrossRef]
- Sarma, A.; Watts, T.W.; Moosa, M.; Liu, Y.; McMahon, P.L. Quantum variational solving of nonlinear and multidimensional partial differential equations. Phys. Rev. A 2024, 109, 062616. [Google Scholar] [CrossRef]
- Baňas, L.; Gess, B.; Vieth, C. Numerical approximation of singular-degenerate parabolic stochastic partial differential equations. IMA J. Numer. Anal. 2024, 44, 2090–2137. [Google Scholar] [CrossRef]
- Alipour, P. The dual reciprocity boundary element method for one-dimensional nonlinear parabolic partial differential equations. J. Math. Sci. 2024, 280, 131–145. [Google Scholar] [CrossRef]
- Nakamura, Y.; Sato, S.; Ohnishi, N. Proper orthogonal decomposition method of constructing a reduced-order model for solving partial differential equations with parametrized initial values. Partial Differ. Equ. Appl. Math. 2024, 9, 100654. [Google Scholar] [CrossRef]
- Ghaffari, A.; Kausar, S. Numerical solution of the partial differential equations that model the steady three-dimensional flow and heat transfer of Carreau fluid between two stretchable rotatory disks. Numer. Methods Partial Differ. Equ. 2023, 39, 3532–3560. [Google Scholar]
- Abd-Elhameed, W.M.; Abu Sunayh, A.F.; Alharbi, M.H.; Atta, A.G. Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation. Aims Math. 2024, 9, 34567–34587. [Google Scholar] [CrossRef]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods in Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Shen, J.; Tang, T.; Wang, L. Spectral Methods: Algorithms, Analysis and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 41. [Google Scholar]
- Ahmed, H.M. Highly accurate method for a singularly perturbed coupled system of convection–diffusion equations with Robin boundary conditions. J. Nonlinear Math. Phys. 2024, 31, 17. [Google Scholar] [CrossRef]
- Abdelkawy, M.A.; Owyed, S.; Soluma, E.M.; Matoog, R.T.; Tedjani, A.H. Spectral solutions for fractional Klein–Gordon models of distributed order. Alex. Eng. J. 2024, 98, 256–265. [Google Scholar] [CrossRef]
- Pitolli, F. A Collocation method for the numerical solution of nonlinear fractional dynamical systems. Algorithms 2019, 12, 156. [Google Scholar] [CrossRef]
- Alsuyuti, M.M.; Doha, E.H.; Ezz-Eldien, S.S.; Youssef, I.K. Spectral Galerkin schemes for a class of multi-order fractional pantograph equations. J. Comput. Appl. Math. 2021, 384, 113157. [Google Scholar] [CrossRef]
- Bognar, G.; Csati, Z. Spectral method for time dependent Navier-Stokes equation. Miskolc Math. Notes 2016, 17, 43–56. [Google Scholar] [CrossRef]
- Corral, R.; Crespo, J. A hybrid unstructured/spectral method for the resolution of Navier-Stokes equations. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A and B, Orlando, FL, USA, 8–12 June 2009; Volume 48883, pp. 409–418. [Google Scholar]
- Agocs, F.J.; Barnett, A.H. An adaptive spectral method for oscillatory second-order linear ODEs with frequency-independent cost. SIAM J. Numer. Anal. 2024, 62, 295–321. [Google Scholar] [CrossRef]
- Kashif, M.; Singh, M.; Som, T.; Craciun, E.M. Numerical study of variable order model arising in chemical processes using operational matrix and collocation method. J. Comput. Sci. 2024, 80, 102339. [Google Scholar] [CrossRef]
- Aslefallah, M.; Abbasbandy, S.; Yüzbasi, S. Solving high-order nonlinear differential equations using operational matrix based on exponential collocation method. Sigma J. Eng. Nat. Sci. 2023, 41, 689–698. [Google Scholar] [CrossRef]
- Farhood, A.K.; Mohammed, O.H.; Taha, B.A. Solving fractional time-delay diffusion equation with variable-order derivative based on shifted Legendre–Laguerre operational matrices. Arab. J. Math. 2023, 12, 529–539. [Google Scholar] [CrossRef]
- Ahmed, H.M. New generalized Jacobi Galerkin operational matrices of derivatives: An algorithm for solving multi-term variable-order time-fractional diffusion-wave equations. Fractal Frac. 2024, 8, 68. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Moussa, H. Pseudo-spectral matrices as a numerical tool for dealing BVPs, based on Legendre polynomials’ derivatives. Alex. Eng. J. 2023, 66, 301–313. [Google Scholar] [CrossRef]
- Mohammed, J.K.; Khudair, A.R. Integro-differential equations: Numerical solution by a new operational matrix based on fourth-order hat functions. Partial Differ. Equ. Appl. Math. 2023, 8, 100529. [Google Scholar] [CrossRef]
- Alsuyuti, M.M.; Doha, E.H.; Ezz-Eldien, S.S. Galerkin operational approach for multi-dimensions fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106608. [Google Scholar] [CrossRef]
- Ahmed, H.M. A new first finite class of classical orthogonal polynomials operational matrices: An application for solving fractional differential equations. Contemp. Math. 2023, 4, 974–994. [Google Scholar] [CrossRef]
- Napoli, A.; Abd-Elhameed, W.M. An innovative harmonic numbers operational matrix method for solving initial value problems. Calcolo 2017, 54, 57–76. [Google Scholar] [CrossRef]
- Quintana, Y.; Ramírez, W.; Uriele, A. On an operational matrix method based on generalized Bernoulli polynomials of level m. Calcolo 2018, 55, 1–29. [Google Scholar] [CrossRef]
- Maleknejad, K.; Rashidinia, J.; Eftekhari, T. A new and efficient numerical method based on shifted fractional-order Jacobi operational matrices for solving some classes of two-dimensional nonlinear fractional integral equations. Numer. Methods Partial Differ. Equ. 2021, 37, 2687–2713. [Google Scholar] [CrossRef]
- Hernández, M.A. Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 2001, 41, 433–445. [Google Scholar] [CrossRef]
- Malachivskyy, P.S.; Pizyur, Y.V.; Malachivskyi, R.P.; Ukhanska, O.M. Chebyshev approximation of functions of several variables. Cybern. Syst. Anal. 2020, 56, 118–125. [Google Scholar] [CrossRef]
- Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; Chapman and Hall: New York, NY, USA; CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods; Courier Corporation: Chelmsford, MA, USA, 2001. [Google Scholar]
- Ahmed, H.M. Numerical solutions for singular Lane–Emden equations using shifted Chebyshev polynomials of the first kind. Contemp. Math. 2023, 4, 132–149. [Google Scholar] [CrossRef]
- Terghini, I.; Hasseine, A.; Caccavo, D.; Bart, H.J. Solution of the population balance equation for wet granulation using second kind Chebyshev polynomials. Chem. Eng. Res. Des. 2023, 189, 262–271. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Ahmed, A.; Baleanu, D.; El-Kady, M. Monic Chebyshev pseudospectral differentiation matrices for higher-order IVPs and BVP: Applications to certain types of real-life problems. Comput. Appl. Math. 2022, 41, 253. [Google Scholar] [CrossRef]
- Polat, S.N.T.; Dincel, A.T. Solution method for systems of nonlinear fractional differential equations using third kind Chebyshev wavelets. Axioms 2023, 12, 546. [Google Scholar] [CrossRef]
- Tural-Polat, S.N.; Dincel, A.T. Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind. Alex. Eng. J. 2022, 61, 5145–5153. [Google Scholar] [CrossRef]
- Xu, Y. An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials. Adv. Appl. Math. 2002, 29, 328–343. [Google Scholar] [CrossRef]
- Draux, A.; Sadik, M.; Moalla, B. Markov–Bernstein inequalities for generalized Gegenbauer weight. Appl. Numer. Math. 2011, 61, 1301–1321. [Google Scholar] [CrossRef]
- Eid, A.; Khader, M.M.; Megahed, A.M. Sixth-kind Chebyshev polynomials technique to numerically treat the dissipative viscoelastic fluid flow in the rheology of Cattaneo–Christov model. Open Phys. 2024, 22, 20240001. [Google Scholar] [CrossRef]
- Obeid, M.; Abd El Salam, M.A.; Younis, J.A. Operational matrix-based technique treating mixed type fractional differential equations via shifted fifth-kind Chebyshev polynomials. Appl. Math. Sci. Eng. 2023, 31, 2187388. [Google Scholar] [CrossRef]
- Sadri, K.; Aminikhah, H. A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation. Int. J. Comput. Math. 2022, 99, 966–992. [Google Scholar] [CrossRef]
- AlQudah, M.A. Generalized Chebyshev polynomials of the second kind. Turk. J. Math. 2015, 39, 842–850. [Google Scholar] [CrossRef]
- Hassani, H.; Machado, J.A.T.; Avazzadeh, Z.; Naraghirad, E. Generalized shifted Chebyshev polynomials: Solving a general class of nonlinear variable order fractional PDE. Commun. Nonlinear Sci. Numer. Simul. 2020, 85, 105229. [Google Scholar] [CrossRef]
- Meng, Y.C.; Guo, Q.Z.; Tan, W.H.; Huang, Z.M. Analytical solutions of coupled-mode equations for multiwaveguide systems, obtained by use of Chebyshev and generalized Chebyshev polynomials. J. Opt. Soc. Am. A 2004, 21, 1518–1528. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Alsuyuti, M.M. Numerical treatment of multi-term fractional differential equations via new kind of generalized Chebyshev polynomials. Fractal Fract. 2023, 7, 74. [Google Scholar] [CrossRef]
- Gamal, M.; Zaky, M.A.; El-Kady, M.; Abdelhakem, M. Chebyshev polynomial derivative-based spectral tau approach for solving high-order differential equations. Comput. Appl. Math. 2024, 43, 412. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Ahmed, H.M.; Zaky, M.A.; Hafez, R.M. A new shifted generalized Chebyshev approach for multi-dimensional sinh-Gordon equation. Phys. Scr. 2024, 99, 095269. [Google Scholar] [CrossRef]
- Toutounian, F.; Tohidi, E. A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis. Appl. Math. Comput. 2013, 223, 298–310. [Google Scholar] [CrossRef]
- Hafez, R.M. Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method. Comput. Appl. Math. 2018, 37, 5253–5273. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.L.; Xie, Z. Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 2013, 51, 1443–1469. [Google Scholar] [CrossRef]
- Dehghan, M.; Shokri, A. A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Partial Differ. Equ. 2008, 24, 1080–1093. [Google Scholar] [CrossRef]
- Mittal, R.C.; Bhatia, R. Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method. Appl. Math. Comput. 2013, 220, 496–506. [Google Scholar] [CrossRef]
- Mohanty, R.K. An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients. Appl. Math. Comput. 2005, 165, 229–236. [Google Scholar] [CrossRef]
- Pandit, S.; Kumar, M.; Tiwari, S. Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients. Comput. Phys. Commun. 2015, 187, 83–90. [Google Scholar] [CrossRef]
GSCCM | |||
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 |
Proposed Method | |||
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 |
-Error | -Error | CPU Time (s) | |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elhameed, W.M.; Hafez, R.M.; Napoli, A.; Atta, A.G. A New Generalized Chebyshev Matrix Algorithm for Solving Second-Order and Telegraph Partial Differential Equations. Algorithms 2025, 18, 2. https://doi.org/10.3390/a18010002
Abd-Elhameed WM, Hafez RM, Napoli A, Atta AG. A New Generalized Chebyshev Matrix Algorithm for Solving Second-Order and Telegraph Partial Differential Equations. Algorithms. 2025; 18(1):2. https://doi.org/10.3390/a18010002
Chicago/Turabian StyleAbd-Elhameed, Waleed Mohamed, Ramy M. Hafez, Anna Napoli, and Ahmed Gamal Atta. 2025. "A New Generalized Chebyshev Matrix Algorithm for Solving Second-Order and Telegraph Partial Differential Equations" Algorithms 18, no. 1: 2. https://doi.org/10.3390/a18010002
APA StyleAbd-Elhameed, W. M., Hafez, R. M., Napoli, A., & Atta, A. G. (2025). A New Generalized Chebyshev Matrix Algorithm for Solving Second-Order and Telegraph Partial Differential Equations. Algorithms, 18(1), 2. https://doi.org/10.3390/a18010002