A Review on Inverse Kinematics, Control and Planning for Robotic Manipulators With and Without Obstacles via Deep Neural Networks
Abstract
:1. Introduction
2. Deep Neural Networks for Inverse Kinematics
2.1. Supervised Learning
2.1.1. Feed-Forward Multilayer Perceptron
2.1.2. Convolutional Neural Network
2.1.3. Recurrent Neural Network
2.2. Unsupervised Learning
2.2.1. Generative Adversarial Networks
2.2.2. Autoencoders
2.2.3. Normalizing Flows
2.2.4. Graph Neural Networks
2.3. Deep Reinforcement Learning
2.4. Performance Summary
3. Deep Neural Networks for Motion Control
3.1. Supervised Learning
3.2. Unsupervised Learning
3.3. Deep Reinforcement Learning
3.4. Performance Summary
4. Deep Neural Networks for Motion Planning
4.1. Supervised Learning
4.2. Unsupervised Learning
4.3. Deep Reinforcement Learning
4.4. Transformer
4.5. Performance Summary
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IK | Inverse Kinematics |
DNN | Deep Neural Network |
PSO | Particle Swarm Optimization |
DOF | Degree of Freedom |
FABRIK | Forward And Backward Reaching Inverse Kinematics |
MLP | Multilayer Perceptron |
GAN | Generative Adversarial Network |
CNN | Convolutional Neural Network |
RNN | Recurrent Neural Network |
LSTM | Long-Short Term Memory |
BiLSTM | Bilateral Long-Short Term Memory |
GRU | Gated Recurrent Units |
BPNN | Backpropagation Neural Network |
AE | Autoencoder |
VAE | Variational Autoencoder |
NF | Normalizing Flows |
GNN | Graph Neural Network |
DRL | Deep Reinforcement Learning |
DQN | Deep Q-Network |
API | Application Programming Interface |
DDPG | Deep Deterministic Policy Gradient |
PPO | Proximal Policy Optimization |
MAPPO | Multi-Agent Proximal Policy Optimization |
TD3 | Twin Delayed DDPG |
SAC | Soft Actor-Critic |
RRT | Rapidly Exploring Random Trees |
PRM | Probabilistic Roadmap |
HER | Hindsight Experience Replay |
PAC | Prophet-guided Actor–Critic |
References
- Paul, R.P. Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators; MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Murray, R.M.; Li, Z.; Sastry, S.S. A mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Latombe, J.C. Robot Motion Planning; Springer Science & Business Media: New York, NY. USA, 1991; Volume 124. [Google Scholar]
- Lewis, F.L.; Dawson, D.M.; Abdallah, C.T. Robot Manipulator Control: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Chou, W.; Liu, Y. An Analytical Inverse Kinematics Solution with the Avoidance of Joint Limits, Singularity and the Simulation of 7-DOF Anthropomorphic Manipulators. Trans. FAMENA 2024, 48, 117–132. [Google Scholar] [CrossRef]
- Zheng, L.; Lin, P.; Liang, M.; Wang, C.; Li, Y.; Sun, J.; Han, Y.; Liu, H. Analytical Inverse Kinematics for a Prismatic-Revolute Hybrid Joints Radiography Robot Mounted on the Ambulance. IEEE/ASME Trans. Mechatronics 2024, 1–11. [Google Scholar] [CrossRef]
- Vu, M.N.; Beck, F.; Schwegel, M.; Hartl-Nesic, C.; Nguyen, A.; Kugi, A. Machine learning-based framework for optimally solving the analytical inverse kinematics for redundant manipulators. Mechatronics 2023, 91, 102970. [Google Scholar] [CrossRef]
- Aristidou, A.; Lasenby, J.; Chrysanthou, Y.; Shamir, A. Inverse kinematics techniques in computer graphics: A survey. Comput. Graph. Forum 2018, 37, 35–58. [Google Scholar] [CrossRef]
- Yonezawa, A.; Yonezawa, H.; Kajiwara, I. Simple inverse kinematics computation considering joint motion efficiency. IEEE Trans. Cybern. 2024, 54, 4903–4914. [Google Scholar] [CrossRef] [PubMed]
- Colan, J.; Davila, A.; Hasegawa, Y. Variable step sizes for iterative Jacobian-based inverse kinematics of robotic manipulators. IEEE Access 2024, 12, 87909–87922. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bui, T.N.; Dai, W.; Nguyen, T.V.; Tao, L.N. Apply some meta-heuristic algorithms to solve inverse kinematic problems of a 7-DoFs manipulator robot. Int. J. Mech. Eng. Robot. Res. 2021, 10, 498–504. [Google Scholar] [CrossRef]
- Li, M.; Qiao, L. A Review and Comparative Study of Differential Evolution Algorithms in Solving Inverse Kinematics of Mobile Manipulator. Symmetry 2023, 15, 1080. [Google Scholar] [CrossRef]
- Santos, D.O.; Molina, L.; Carvalho, J.G.; Carvalho, E.A.; Freire, E.O. Modifications of Fully Resampled PSO in the Inverse Kinematics of Robot Manipulators. IEEE Robot. Autom. Lett. 2024, 9, 1923–1928. [Google Scholar] [CrossRef]
- Li, Q.; Cang, N.; Zhang, W.; Guo, D.; Zhang, C. A Pseudo-Inverse Redundancy-Based Resolution Scheme at the Acceleration Level to Control Robotic Arm Motion. In Proceedings of the 2023 6th International Conference on Robotics, Control and Automation Engineering (RCAE), Suzhou, China, 27–29 October 2023; pp. 18–22. [Google Scholar]
- Gilbert, E.G.; Johnson, D.W.; Keerthi, S.S. A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 1988, 4, 193–203. [Google Scholar] [CrossRef]
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Lee, K.K.; Buss, M. Obstacle avoidance for redundant robots using Jacobian transpose method. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 3509–3514. [Google Scholar]
- Scoccia, C.; Palmieri, G.; Palpacelli, M.C.; Callegari, M. Real-time strategy for obstacle avoidance in redundant manipulators. In Advances in Italian Mechanism Science. IFToMM ITALY 2020. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2021; Volume 91, pp. 278–285. [Google Scholar]
- Wei, K.; Ren, B. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm. Sensors 2018, 18, 571. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Luo, N.; Liu, D.; Zhao, Z.; Liang, C. Path planning for manipulators based on an improved probabilistic roadmap method. Robot. Comput.-Integr. Manuf. 2021, 72, 102196. [Google Scholar] [CrossRef]
- Liu, R.; Nageotte, F.; Zanne, P.; de Mathelin, M.; Dresp-Langley, B. Deep reinforcement learning for the control of robotic manipulation: A focussed mini-review. Robotics 2021, 10, 22. [Google Scholar] [CrossRef]
- Sari, Y. Performance evaluation of the various training algorithms and network topologies in a neural-network-based inverse kinematics solution for robots. Int. J. Adv. Robot. Syst. 2014, 11, 64. [Google Scholar] [CrossRef]
- Tamizi, M.G.; Yaghoubi, M.; Najjaran, H. A review of recent trend in motion planning of industrial robots. Int. J. Intell. Robot. Appl. 2023, 7, 253–274. [Google Scholar] [CrossRef]
- Noroozi, F.; Daneshmand, M.; Fiorini, P. Conventional, Heuristic and Learning-Based Robot Motion Planning: Reviewing Frameworks of Current Practical Significance. Machines 2023, 11, 722. [Google Scholar] [CrossRef]
- Ozalp, R.; Ucar, A.; Guzelis, C. Advancements in Deep Reinforcement Learning and Inverse Reinforcement Learning for Robotic Manipulation: Towards Trustworthy, Interpretable, and Explainable Artificial Intelligence. IEEE Access 2024, 12, 51840–51858. [Google Scholar] [CrossRef]
- Toche Tchio, G.M.; Kenfack, J.; Kassegne, D.; Menga, F.D.; Ouro-Djobo, S.S. A comprehensive review of supervised learning algorithms for the diagnosis of photovoltaic systems, Proposing a new approach using an ensemble learning algorithm. Appl. Sci. 2024, 14, 2072. [Google Scholar] [CrossRef]
- Nugroho, A.; Yuniarno, E.M.; Purnomo, M.H. ARKOMA dataset: An open-source dataset to develop neural networks-based inverse kinematics model for NAO robot arms. Data Brief 2023, 51, 109727. [Google Scholar] [CrossRef] [PubMed]
- Rathnam, R.; Godfrey, W.W. Data Driven Approach for Inverse Kinematics in 2D and 3D. In Proceedings of the 2023 IEEE 7th Conference on Information and Communication Technology (CICT), Jabalpur, India, 15–17 December 2023; pp. 1–6. [Google Scholar]
- Zhang, B. Inverse Kinematics Implementation Techniques in Robotics. Highlights Sci. Eng. Technol. 2024, 81, 109–120. [Google Scholar] [CrossRef]
- Bouzid, R.; Narayan, J.; Gritli, H. Solving Inverse Kinematics Problem for Manipulator Robots Using Artificial Neural Network with Varied Dataset Formats. In Complex Systems and Their Applications; Springer Nature: Cham, Switzerland, 2024; pp. 55–78. [Google Scholar]
- Bouzid, R.; Gritli, H.; Narayan, J. ANN approach for SCARA robot inverse kinematics solutions with diverse datasets and optimisers. Appl. Comput. Syst. 2024, 29, 24–34. [Google Scholar] [CrossRef]
- Chan, K.Y.; Abu-Salih, B.; Qaddoura, R.; Ala’M, A.Z.; Palade, V.; Pham, D.S.; Del Ser, J.; Muhammad, K. Deep neural networks in the cloud: Review, applications, challenges and research directions. Neurocomputing 2023, 545, 126327. [Google Scholar] [CrossRef]
- Semwal, V.B.; Gupta, Y. Performance analysis of data-driven techniques for solving inverse kinematics problems. In Intelligent Systems and Applications. IntelliSys 2021; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 294, pp. 85–99. [Google Scholar]
- Semwal, V.B.; Reddy, M.; Narad, A. Comparative study of inverse kinematics using data driven and fabrik approach. In Proceedings of the 2021 5th International Conference on Advances in Robotics, Kanpur India, 30 June–4 July 2021; pp. 1–6. [Google Scholar]
- Sharkawy, A.N.; Khairullah, S.S. Forward and Inverse Kinematics Solution of A 3-DOF Articulated Robotic Manipulator Using Artificial Neural Network. Int. J. Robot. Control Syst. 2023, 3, 330–353. [Google Scholar] [CrossRef]
- Bouzid, R.; Narayan, J.; Gritli, H. Investigating neural network hyperparameter variations in robotic arm inverse kinematics for different arm lengths. In Proceedings of the 2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 18–20 January 2024; pp. 351–356. [Google Scholar]
- Šegota, S.B.; Anđelić, N.; Mrzljak, V.; Lorencin, I.; Kuric, I.; Car, Z. Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator. Int. J. Adv. Robot. Syst. 2021, 18, 1729881420925283. [Google Scholar] [CrossRef]
- Toquica, J.S.; Oliveira, P.S.; Souza, W.S.; Motta, J.M.S.; Borges, D.L. An analytical and a Deep Learning model for solving the inverse kinematic problem of an industrial parallel robot. Comput. Ind. Eng. 2021, 151, 106682. [Google Scholar] [CrossRef]
- Lu, J.; Zou, T.; Jiang, X. A neural network based approach to inverse kinematics problem for general six-axis robots. Sensors 2022, 22, 8909. [Google Scholar] [CrossRef]
- Cagigas-Muñiz, D. Artificial Neural Networks for inverse kinematics problem in articulated robots. Eng. Appl. Artif. Intell. 2023, 126, 107175. [Google Scholar] [CrossRef]
- Hlaváč, V. MLP neural network for a kinematic control of a redundant planar manipulator. In Advances in Mechanism Design III. TMM 2020. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2022; Volume 85, pp. 24–32. [Google Scholar]
- Hlaváč, V. Inverted Kinematics of a Redundant Manipulator with a MLP Neural Network. In Proceedings of the 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Male, Maldives, 16–18 November 2022; pp. 1–5. [Google Scholar]
- Habekost, J.G.; Strahl, E.; Allgeuer, P.; Kerzel, M.; Wermter, S. Cycleik: Neuro-inspired inverse kinematics. In Artificial Neural Networks and Machine Learning—ICANN 2023; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; Volume 14254, pp. 457–470. [Google Scholar]
- Wu, S.; Li, Z.; Chen, W.; Sun, F. Dynamic Modeling of Robotic Manipulator via an Augmented Deep Lagrangian Network. Tsinghua Sci. Technol. 2024, 29, 1604–1614. [Google Scholar] [CrossRef]
- Li, Z.; Wu, S.; Chen, W.; Sun, F. Extrapolation of Physics-Inspired Deep Networks in Learning Robot Inverse Dynamics. Mathematics 2024, 12, 2527. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Wen, X.; Wang, Y.; Zhu, Q.; Wu, J.; Xiong, R.; Xie, A. Design of recognition algorithm for multiclass digital display instrument based on convolution neural network. Biomim. Intell. Robot. 2023, 3, 100118. [Google Scholar] [CrossRef]
- Elkholy, H.A.; Shahin, A.S.; Shaarawy, A.W.; Marzouk, H.; Elsamanty, M. Solving inverse kinematics of a 7-DOF manipulator using convolutional neural network. In Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020), Cairo, Egypt, 8–10 April 2020; Advances in Intelligent Systems and Computing. Springer: Cham, Switzerland, 2020; Volume 1153, pp. 343–352. [Google Scholar]
- Kumhar, H.S.; Kukshal, V. Inverse kinematic solution for 6-r industrial robot manipulator using convolution neural network. In Recent Trends in Product Design and Intelligent Manufacturing Systems; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2022; pp. 923–930. [Google Scholar]
- Wagaa, N.; Kallel, H.; Mellouli, N. Analytical and deep learning approaches for solving the inverse kinematic problem of a high degrees of freedom robotic arm. Eng. Appl. Artif. Intell. 2023, 123, 106301. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Z.; Cai, C.; Yang, M.; Zhang, H.; Fu, L.; Zhang, J. Deep learning-based predicting and compensating method for the pose deviations of parallel robots. Comput. Ind. Eng. 2024, 191, 110179. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Mienye, I.D.; Swart, T.G.; Obaido, G. Recurrent neural networks: A comprehensive review of architectures, variants, and applications. Information 2024, 15, 517. [Google Scholar] [CrossRef]
- Shaar, A.; Ghaeb, J.A. Intelligent Solution for Inverse Kinematic of Industrial Robotic Manipulator Based on RNN. In Proceedings of the 2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 22–24 May 2023; pp. 74–79. [Google Scholar]
- Jiang, G.; Luo, M.; Bai, K.; Chen, S. A precise positioning method for a puncture robot based on a PSO-optimized BP neural network algorithm. Appl. Sci. 2017, 7, 969. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Chen, S.; Xu, M.; Yu, Y.; Liu, P. Inverse Kinematics Analysis of 5-DOF Cooperative Robot Based on Long Short-Term Memory Network. In Proceedings of the 2023 IEEE 3rd International Conference on Software Engineering and Artificial Intelligence (SEAI), Xiamen, China, 16–18 June 2023; pp. 245–249. [Google Scholar]
- Tsai, M.T.; King, C.T.; Ho, C.K. Exploiting Joint Dependencies for Data-driven Inverse Kinematics with Neural Networks for High-DOF Robot Arms. In Proceedings of the ISCA 34th International Conference on Computer Applications in Industry and Engineering, EPiC Series in Computing, Online, 11–13 October 2021; Volume 79, pp. 159–170. [Google Scholar]
- Kong, L. Kinematic resolutions of redundant robot manipulators using integration-enhanced RNNs. arXiv 2020, arXiv:2008.08228. [Google Scholar]
- Bensadoun, R.; Gur, S.; Blau, N.; Wolf, L. Neural inverse kinematic. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 1787–1797. [Google Scholar]
- Vaishnavi, J.; Singh, B.; Vijayvargiya, A.; Kumar, R. Deep Learning Framework for Inverse Kinematics Mapping for a 5 DoF Robotic Manipulator. In Proceedings of the 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 14–17 December 2022; pp. 1–6. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 27, Montreal, QC, Canada, 8–13 December 2014; Volume 27. [Google Scholar]
- Ren, H.; Ben-Tzvi, P. Learning inverse kinematics and dynamics of a robotic manipulator using generative adversarial networks. Robot. Auton. Syst. 2020, 124, 103386. [Google Scholar] [CrossRef]
- Lembono, T.S.; Pignat, E.; Jankowski, J.; Calinon, S. Learning constrained distributions of robot configurations with generative adversarial network. IEEE Robot. Autom. Lett. 2021, 6, 4233–4240. [Google Scholar] [CrossRef]
- Zhai, J.; Zhang, S.; Chen, J.; He, Q. Autoencoder and its various variants. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 415–419. [Google Scholar]
- Kingma, D.P. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Yoshimitsu, Y.; Osa, T.; Ikemoto, S. Forward/Inverse Kinematics Modeling for Tensegrity Manipulator Based on Goal-Conditioned Variational Autoencoder. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 6668–6673. [Google Scholar]
- Wilhelm, N.; Haddadin, S.; Burgkart, R.; Van Der Smagt, P.; Karl, M. Accurate Kinematic Modeling using Autoencoders on Differentiable Joints. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 7122–7128. [Google Scholar]
- Ho, C.K.; Chan, L.W.; King, C.T.; Yen, T.Y. A deep learning approach to navigating the joint solution space of redundant inverse kinematics and its applications to numerical IK computations. IEEE Access 2023, 11, 2274–2290. [Google Scholar] [CrossRef]
- Kobyzev, I.; Prince, S.J.; Brubaker, M.A. Normalizing flows: An introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3964–3979. [Google Scholar] [CrossRef]
- Kim, S.; Perez, J. Learning reachable manifold and inverse mapping for a redundant robot manipulator. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 4731–4737. [Google Scholar]
- Ames, B.; Morgan, J.; Konidaris, G. Ikflow: Generating diverse inverse kinematics solutions. IEEE Robot. Autom. Lett. 2022, 7, 7177–7184. [Google Scholar] [CrossRef]
- Park, S.; Schwartz, M.; Park, J. NODEIK: Solving Inverse Kinematics with Neural Ordinary Differential Equations for Path Planning. In Proceedings of the 2022 22nd International Conference on Control, Automation and Systems (ICCAS), Busan, Republic of Korea, 27 November–1 December 2022; pp. 944–949. [Google Scholar]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Limoyo, O.; Marić, F.; Giamou, M.; Alexson, P.; Petrović, I.; Kelly, J. Euclidean Equivariant Models for Generative Graphical Inverse Kinematics. arXiv 2023, arXiv:2307.01902. [Google Scholar]
- Limoyo, O.; Maric, F.; Giamou, M.; Alexson, P.; Petrovic, I.; Kelly, J. One Network, Many Robots: Generative Graphical Inverse Kinematics. CoRR 2022. [Google Scholar] [CrossRef]
- Kim, J.T.; Park, J.; Choi, S.; Ha, S. Learning robot structure and motion embeddings using graph neural networks. arXiv 2021, arXiv:2109.07543. [Google Scholar]
- Sutton, R.S. Reinforcement learning: An introduction. In A Bradford Book; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Malik, A.; Lischuk, Y.; Henderson, T.; Prazenica, R. A deep reinforcement-learning approach for inverse kinematics solution of a high degree of freedom robotic manipulator. Robotics 2022, 11, 44. [Google Scholar] [CrossRef]
- Shivkumar, S.; Kumaar, A.N. Manipulator Control using Federated Deep Reinforcement Learning. In Proceedings of the 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 12–14 July 2024; pp. 1–6. [Google Scholar]
- Majumder, S.; Sahoo, S.R. A Reinforcement-Learning Approach to Control Robotic Manipulator Based on Improved DDPG. In Proceedings of the 2023 Ninth Indian Control Conference (ICC), Visakhapatnam, India, 18–20 December 2023; pp. 281–286. [Google Scholar]
- Zhao, C.; Wei, Y.; Xiao, J.; Sun, Y.; Zhang, D.; Guo, Q.; Yang, J. Inverse kinematics solution and control method of 6-degree-of-freedom manipulator based on deep reinforcement learning. Sci. Rep. 2024, 14, 12467. [Google Scholar] [CrossRef]
- Perrusquía, A.; Yu, W.; Li, X. Multi-agent reinforcement learning for redundant robot control in task-space. Int. J. Mach. Learn. Cybern. 2021, 12, 231–241. [Google Scholar] [CrossRef]
- Chen, Y.; Su, S.; Ni, K.; Li, C. Integrated Intelligent Control of Redundant Degrees-of-Freedom Manipulators via the Fusion of Deep Reinforcement Learning and Forward Kinematics Models. Machines 2024, 12, 667. [Google Scholar] [CrossRef]
- Liang, X.; He, G.; Su, T.; Wang, W.; Huang, C.; Zhao, Q.; Hou, Z.G. Finite-time observer-based variable impedance control of cable-driven continuum manipulators. IEEE Trans. Hum.-Mach. Syst. 2021, 52, 26–40. [Google Scholar] [CrossRef]
- Wang, Q.; Hong, Z.; Zhong, Y. Learn to swim: Online motion control of an underactuated robotic eel based on deep reinforcement learning. Biomim. Intell. Robot. 2022, 2, 100066. [Google Scholar] [CrossRef]
- Hlavac, V. Kinematics control of a redundant planar manipulator with a MLP neural network. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, Mauritius, 7–8 October 2021; pp. 1–5. [Google Scholar]
- Hlavac, V. Neural Network for the identification of a functional dependence using data preselection. Neural Netw. World 2021, 2, 109–124. [Google Scholar] [CrossRef]
- Hlaváč, V. Accuracy of the Inverse Kinematics of a Planar Redundant Manipulator Solved by an MLP Neural Network. In Advances in Mechanism Design IV. TMM 2024. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2024; Volume 171, pp. 202–211. [Google Scholar]
- Li, Z.; Li, S. Recursive recurrent neural network: A novel model for manipulator control with different levels of physical constraints. CAAI Trans. Intell. Technol. 2023, 8, 622–634. [Google Scholar] [CrossRef]
- Stephan, B.; Dontsov, I.; Müller, S.; Gross, H.M. On Learning of Inverse Kinematics for Highly Redundant Robots with Neural Networks. In Proceedings of the 2023 21st International Conference on Advanced Robotics (ICAR), Abu Dhabi, United Arab Emirates, 5–8 December 2023; pp. 402–408. [Google Scholar]
- Li, Z.; Li, S. Neural network model-based control for manipulator: An autoencoder perspective. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 2854–2868. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Cordova, C.; Sarango, R.; Castillo, D.; Lakshminarayanan, V. A deep reinforcement learning framework for control of robotic manipulators in simulated environments. IEEE Access 2024, 12, 103133–103161. [Google Scholar] [CrossRef]
- Blaise, J.; Bazzocchi, M.C. Space Manipulator Collision Avoidance Using a Deep Reinforcement Learning Control. Aerospace 2023, 10, 778. [Google Scholar] [CrossRef]
- Kumar, V.; Hoeller, D.; Sundaralingam, B.; Tremblay, J.; Birchfield, S. Joint space control via deep reinforcement learning. In Proceedings of the RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 3619–3626. [Google Scholar]
- Væhrens, L.; Álvarez, D.D.; Berger, U.; Bøgh, S. Learning Task-independent Joint Control for Robotic Manipulators with Reinforcement Learning and Curriculum Learning. In Proceedings of the 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Nassau, Bahamas, 12–14 December 2022; pp. 1250–1257. [Google Scholar]
- Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 41–48. [Google Scholar]
- Zhang, T.; Zhang, K.; Lin, J.; Louie, W.Y.G.; Huang, H. Sim2real learning of obstacle avoidance for robotic manipulators in uncertain environments. IEEE Robot. Autom. Lett. 2021, 7, 65–72. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Yang, R.; Wu, S.; Guo, R.; Dong, E. An efficiently convergent deep reinforcement learning-based trajectory planning method for manipulators in dynamic environments. J. Intell. Robot. Syst. 2023, 107, 50. [Google Scholar] [CrossRef]
- Su, T.; Liang, X.; Zeng, X.; Liu, S. Pythagorean-Hodograph curves-based trajectory planning for pick-and-place operation of Delta robot with prescribed pick and place heights. Robotica 2023, 41, 1651–1672. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, F.; Li, B. A heuristic tomato-bunch harvest manipulator path planning method based on a 3D-CNN-based position posture map and rapidly-exploring random tree. Comput. Electron. Agric. 2023, 213, 108183. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Quadratic programming. In Numerical Optimization; Springer: New York, NY, USA, 2006; pp. 448–492. [Google Scholar]
- Xu, Z.; Zhou, X.; Wu, H.; Li, X.; Li, S. Motion planning of manipulators for simultaneous obstacle avoidance and target tracking: An RNN approach with guaranteed performance. IEEE Trans. Ind. Electron. 2021, 69, 3887–3897. [Google Scholar] [CrossRef]
- Liang, J.; Xu, Z.; Zhou, X.; Li, S.; Ye, G. Recurrent neural networks-based collision-free motion planning for dual manipulators under multiple constraints. IEEE Access 2020, 8, 54225–54236. [Google Scholar] [CrossRef]
- Jin, T.; Zhu, H.; Zhu, J.; Zhu, S.; He, Z.; Zhang, S.; Song, W.; Gu, J. Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation. IEEE Trans. Ind. Inform. 2024, 20, 14239–14248. [Google Scholar] [CrossRef]
- Kuang, X.; Zhou, S. Robotic Manipulator in Dynamic Environment with SAC Combing Attention Mechanism and LSTM. Electronics 2024, 13, 1969. [Google Scholar] [CrossRef]
- Tenhumberg, J.; Mielke, A.; Bäuml, B. Efficient Learning of Fast Inverse Kinematics with Collision Avoidance. In Proceedings of the 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), Austin, TX, USA, 12–14 December 2023; pp. 1–8. [Google Scholar]
- Hung, C.M.; Zhong, S.; Goodwin, W.; Jones, O.P.; Engelcke, M.; Havoutis, I.; Posner, I. Reaching through latent space: From joint statistics to path planning in manipulation. IEEE Robot. Autom. Lett. 2022, 7, 5334–5341. [Google Scholar] [CrossRef]
- Dastider, A.; Lin, M. DAMON: Dynamic Amorphous Obstacle Navigation using Topological Manifold Learning and Variational Autoencoding. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 251–258. [Google Scholar]
- Lin, T.; Zha, H. Riemannian manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 796–809. [Google Scholar]
- Zhong, J.; Wang, T.; Cheng, L. Collision-free path planning for welding manipulator via hybrid algorithm of deep reinforcement learning and inverse kinematics. Complex Intell. Syst. 2021, 8, 1899–1912. [Google Scholar] [CrossRef]
- Ge, D. Research on obstacle avoidance path planning of robotic manipulator based on deep reinforcement learning. In Proceedings of the Fourth International Conference on Advanced Algorithms and Neural Networks (AANN 2024), Qingdao, China, 9–11 August 2024; Volume 13416, pp. 428–433. [Google Scholar]
- Bhuiyan, T.; Kästner, L.; Hu, Y.; Kutschank, B.; Lambrecht, J. Deep-reinforcement-learning-based path planning for industrial robots using distance sensors as observation. In Proceedings of the 2023 8th International Conference on Control and Robotics Engineering (ICCRE), Niigata, Japan, 21–23 April 2023; pp. 204–210. [Google Scholar]
- Prianto, E.; Park, J.H.; Bae, J.H.; Kim, J.S. Deep reinforcement learning-based path planning for multi-arm manipulators with periodically moving obstacles. Appl. Sci. 2021, 11, 2587. [Google Scholar] [CrossRef]
- Liu, H.; Ying, F.; Jiang, R.; Shan, Y.; Shen, B. Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning. IEEE/ASME Trans. Mech. 2024, 29, 4377–4388. [Google Scholar] [CrossRef]
- Vaswani, A. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Zhang, Y.; Liu, Y.; Liu, S.; Liang, W.; Wang, C.; Wang, K. Multimodal Perception for Indoor Mobile Robotics Navigation and Safe Manipulation. IEEE Trans. Cogn. Dev. Syst. 2024, 1–13. [Google Scholar] [CrossRef]
- Kim, H.; Ohmura, Y.; Kuniyoshi, Y. Transformer-based deep imitation learning for dual-arm robot manipulation. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 8965–8972. [Google Scholar]
- Fishman, A.; Walsman, A.; Bhardwaj, M.; Yuan, W.; Sundaralingam, B.; Boots, B.; Fox, D. Avoid Everything: Model-Free Collision Avoidance with Expert-Guided Fine-Tuning. In Proceedings of the CoRL Workshop on Safe and Robust Robot Learning for Operation in the Real World, Munich, Germany, 9 November 2024. [Google Scholar]
- Huang, X.; Batra, D.; Rai, A.; Szot, A. Skill transformer: A monolithic policy for mobile manipulation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 10852–10862. [Google Scholar]
- Xing, D.; Xia, W.; Xu, B. Kinematics learning of massive heterogeneous serial robots. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 10535–10541. [Google Scholar]
- Alkhodary, A.; Gur, B. Kinematics transformer: Solving the inverse modeling problem of soft robots using transformers. arXiv 2022, arXiv:2211.06643. [Google Scholar]
- Alkhodary, A.; Gur, B. KineFormer: Solving the Inverse Modeling Problem of Soft Robots Using Transformers. In Proceedings of the 7th EAI International Conference on Robotic Sensor Networks (ROSENET 2023). EAI/Springer Innovations in Communication and Computing, Istanbul, Türkiye, 15–16 December 2023; Springer: Cham, Switzerland, 2023; pp. 31–45. [Google Scholar]
Reference | Model | Year | Metric | Performance | DOF | Time (s) | Advantages | Limitations |
---|---|---|---|---|---|---|---|---|
[43] | MLP | 2023 | Accuracy | 98.49% | 8 | 0.243 | Simple architecture. | Does not work well in large workspaces. |
[50] | CNN | 2023 | Accuracy | 94.66% | 6 | 0.637 | Extracts significant features from the input dataset. | Complexity similar to RNN but worse performance. |
[50] | RNN | 2023 | Accuracy | 95.34% | 6 | 0.659 | Deals with dependencies in time series. | More complex, higher time cost. |
[63] | GAN | 2021 | Accuracy | 88.6% | 7 | 0.0125 | Learns distribution of valid robot configurations. | Useful for initial guesses but lacks further precision. |
[68] | VAE | 2023 | Distance | 0.5 cm | 7 | 0.0272 | Models IK solution space. | Not as developed as other methods. |
[75] | GNN | 2022 | Accuracy | 90% | 6 | 0.0097 | One network for every robot. | Not as developed as other methods. |
[83] | DRL | 2024 | Accuracy | 98% | 4 | - | No training dataset. Simpler and less sensitive to hyperparameters. | Sim2real transfer. |
Reference | Model | Year | Control | Dynamic Environment | DOF | Orientation Considered | Advantages | Limitations |
---|---|---|---|---|---|---|---|---|
[88] | MLP | 2024 | Position | No | 5 | No | Simple architecture. | Requires dataset limited to points far from obstacles. |
[89] | RNN | 2023 | Velocity | No | 7 | No | Problem can be considered a time series. | Better suited for motion planning. |
[90] | Unsupervised | 2023 | Position | No | 7 | Yes | Does not need to add obstacles to dataset. | Not many examples. |
[95] | DRL | 2022 | Both | Yes | 7 | Yes | Simplest way to add obstacles. | Sim2real transfer. |
Reference | Model | Year | Planning | Dynamic Environment | DOF | Orientation Considered | Advantages | Limitations |
---|---|---|---|---|---|---|---|---|
[102] | RNN | 2021 | Online | Yes | 6 | Yes | Problem can be considered a time series. | Problem must be reformulated. |
[63] | GAN | 2021 | Offline | Yes | 7 | No | Learns a distribution of valid robot configurations. | Problem must be reformulated and added to a larger scheme. |
[107] | VAE | 2022 | Offline | No | 7 | No | Models latent space of target, joint positions and obstacles. | Problem must be reformulated and added to a larger scheme. |
[114] | DRL | 2024 | Online | No | 7 | Yes | Simplest way to formulate the problem. | Sim2real transfer. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzada-Garcia, A.; Victores, J.G.; Naranjo-Campos, F.J.; Balaguer, C. A Review on Inverse Kinematics, Control and Planning for Robotic Manipulators With and Without Obstacles via Deep Neural Networks. Algorithms 2025, 18, 23. https://doi.org/10.3390/a18010023
Calzada-Garcia A, Victores JG, Naranjo-Campos FJ, Balaguer C. A Review on Inverse Kinematics, Control and Planning for Robotic Manipulators With and Without Obstacles via Deep Neural Networks. Algorithms. 2025; 18(1):23. https://doi.org/10.3390/a18010023
Chicago/Turabian StyleCalzada-Garcia, Ana, Juan G. Victores, Francisco J. Naranjo-Campos, and Carlos Balaguer. 2025. "A Review on Inverse Kinematics, Control and Planning for Robotic Manipulators With and Without Obstacles via Deep Neural Networks" Algorithms 18, no. 1: 23. https://doi.org/10.3390/a18010023
APA StyleCalzada-Garcia, A., Victores, J. G., Naranjo-Campos, F. J., & Balaguer, C. (2025). A Review on Inverse Kinematics, Control and Planning for Robotic Manipulators With and Without Obstacles via Deep Neural Networks. Algorithms, 18(1), 23. https://doi.org/10.3390/a18010023