Hybrid BiLSTM-ARIMA Architecture with Whale-Driven Optimization for Financial Time Series Forecasting
Abstract
1. Introduction
2. Data Description
2.1. Data Source
2.2. Cointegration Tests
3. Methods
3.1. ARIMA
3.2. BiLTM
3.3. WOA
Algorithm 1. Whale optimization algorithm (WOA) |
Input: Objective function , population size , maximum iterations Max Output: Best solution and its fitness |
1: Initialize the whale population 2: Evaluate the fitness of each whale f(x) 3: Identify the best solution 4: For to do: 5: For each whale = 1 to : 6: Calculate parameter 7: Generate random numbers and in [0, 1] 8: Compute 9: Compute 10: Generate in [0, 1] 11: If then 12: If then 13: Compute 14: Update 15: Else 16: Choose randomly from the population 17: Compute 18: Update 19: Else 20: Compute 21: Generate in [−1, 1] 22: Set (a constant, typically = 1) 23: Update 24: Update fitness of all whales 25: Update if a better solution is found 26: Return and |
3.4. WOA-BiLSTM-ARIMA Hybrid Model
3.5. Evaluation Metrics
4. Experiment
4.1. Experimental Settings
4.2. Data Processing
4.3. Optimizing Network Parameters by the WOA
4.4. Results and Analysis
4.5. Walk-Forward Validation
4.6. Backtesting Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alsharef, A.; Aggarwal, K.; Sonia; Kumar, M.; Mishra, A. Review of ML and AutoML solutions to forecast time-series data. Arch. Comput. Methods Eng. 2022, 29, 5297–5311. [Google Scholar] [CrossRef]
- Yang, Y. Research on financial investment risk assessment techniques and applications. Sci. Technol. Soc. Dev. Proc. Ser. 2024, 2, 117–123. [Google Scholar] [CrossRef]
- Huang, S.; An, H.; Gao, X.; Hao, X.; Huang, X. The multiscale conformation evolution of the financial time series. Math. Probl. Eng. 2015, 2015, 563145. [Google Scholar] [CrossRef]
- Usmani, U.A.; Aziz, I.A.; Jaafar, J.; Watada, J. Deep learning for anomaly detection in time-series data: An analysis of techniques, review of applications, and guidelines for future research. IEEE Access 2024, 12, 174564–174590. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Virtanen, I.; Yli-Olli, P. Forecasting stock market prices in a thin security market. Omega 1987, 15, 145–155. [Google Scholar] [CrossRef]
- Alkamali, A. Bitcoin Short-Term Price Prediction Using Time Series Analysis; Rochester Institute of Technology: Rochester, NY, USA, 2024. [Google Scholar]
- Li, J. Research on risk hedging strategy of SSE 50ETF options based on GARCH model. Econ. Issues 2023, 45, 68–75. [Google Scholar]
- Karanam, R.K.; Natakam, V.M.; Boinapalli, N.R.; Sridharlakshmi, N.R.B.; Allam, A.R.; Gade, P.K.; Manikyala, A. Neural networks in algorithmic trading for financial markets. Asian Account. Audit. Adv. 2018, 9, 115–126. [Google Scholar]
- Kim, K.J. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55, 307–319. [Google Scholar] [CrossRef]
- Zhang, C.; Zhong, H.; Hu, A. Research on early warning of financial crisis of listed companies based on random forest and time series. Mob. Inf. Syst. 2022, 2022, 1573966. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Banerjee, T.; Sinha, S.; Choudhury, P. Long term and short term forecasting of horticultural produce based on the LSTM network model. Appl. Intell. 2022, 52, 9117–9147. [Google Scholar] [CrossRef]
- Sako, K.; Mpinda, B.N.; Rodrigues, P.C. Neural networks for financial time series forecasting. Entropy 2022, 24, 657. [Google Scholar] [CrossRef]
- Benidis, K.; Rangapuram, S.S.; Flunkert, V.; Wang, Y.; Maddix, D.; Turkmen, C.; Januschowski, T. Deep learning for time series forecasting: Tutorial and literature survey. ACM Comput. Surv. 2022, 55, 1–36. [Google Scholar] [CrossRef]
- Zhang, Y.A.; Yan, B.; Aasma, M. A novel deep learning framework: Prediction and analysis of financial time series using CEEMD and LSTM. Expert Syst. Appl. 2020, 159, 113609. [Google Scholar] [CrossRef]
- He, K.; Yang, Q.; Ji, L.; Pan, J.; Zou, Y. Financial time series forecasting with the deep learning ensemble model. Mathematics 2023, 11, 1054. [Google Scholar] [CrossRef]
- Song, X.; Chen, Z.S. Enhancing financial time series forecasting in the shipping market: A hybrid approach with Light Gradient Boosting Machine. Eng. Appl. Artif. Intell. 2024, 136, 108942. [Google Scholar] [CrossRef]
- Liu, T.; Li, J.; Zhang, Z.; Yu, H.; Gao, S. FD-GRNet: A dendritic-driven GRU framework for advanced stock market prediction. IEEE Access 2025, 13, 60321–60332. [Google Scholar] [CrossRef]
- Singh, U.; Saurabh, K.; Trehan, N.; Vyas, R.; Vyas, O.P. GA-LSTM: Performance Optimization of LSTM driven Time Series Forecasting. Comput. Econ. 2024, 64, 1–36. [Google Scholar] [CrossRef]
- Tang, X.; Song, Y.; Jiao, X.; Sun, Y. On forecasting realized volatility for bitcoin based on deep learning PSO–GRU model. Comput. Econ. 2024, 63, 2011–2033. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Karbuz, S.; Jumah, A. Cointegration and commodity arbitrage. Agribusiness 1995, 11, 235–243. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Engle, R.F.; Granger, C.W. Co-integration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Graves, A.; Graves, A. Long short-term memory. Supervised Seq. Label. Recurr. Neural Netw. 2012, 385, 37–45. [Google Scholar]
- Zhang, S.; Zheng, D.; Hu, X.; Yang, M. Bidirectional long short-term memory networks for relation classification. In Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation, Shanghai, China, 30 October–1 November 2015; pp. 73–78. [Google Scholar]
- Davydovskyi, Y.; Reva, O.; Malyeyeva, O.; Kosenko, V. Application of the sliding window mechanism in simulation of computer network loading parameters. Adv. Inf. Syst. 2020, 4, 16–22. [Google Scholar] [CrossRef]
- Kilichev, D.; Kim, W. Hyperparameter optimization for 1D-CNN-based network intrusion detection using GA and PSO. Mathematics 2023, 11, 3724. [Google Scholar] [CrossRef]
- Ulutas, H.; Günay, R.B.; Sahin, M.E. Detecting diabetes in an ensemble model using a unique PSO-GWO hybrid approach to hyperparameter optimization. Neural Comput. Appl. 2024, 36, 18313–18341. [Google Scholar] [CrossRef]
- Giacomini, R.; White, H. Tests of conditional predictive ability. Econometrica 2006, 74, 1545–1578. [Google Scholar] [CrossRef]
Data Feature | Indicator |
---|---|
X1 | Closing Price |
X2 | Opening Price |
X3 | Highest Price |
X4 | Lowest Price |
X5 | Moving Average Convergence Divergence (MACD) |
X6 | Difference (DIF) |
X7 | Differential Exponential Average (DEA) |
X8 | Real Price Fluctuation |
Order | Series | ADF Test Statistic | Critical Value | p-Value | Stationarity | |||
---|---|---|---|---|---|---|---|---|
1% | 5% | 10% | ||||||
Zero | RB | Close | −1.835 | −3.431 | −2.682 | −2.567 | 0.363 | no |
HC | Close | −1.763 | 0.412 | no | ||||
One | RB | Close | −47.471 | −3.431 | −2.682 | −2.567 | 0.000 | yes |
HC | Close | −47.748 | 0.000 | yes |
Residual | ADF Test Statistic | Critical Value | p-Value | Stationarity | ||
---|---|---|---|---|---|---|
1% | 5% | 10% | ||||
μ | −5.621 | −3.431 | −2.862 | −2.567 | 0.000 | yes |
Series | ADF Test Statistic | Critical Value | p-Value | Stationarity | ||
---|---|---|---|---|---|---|
1% | 5% | 10% | ||||
Close | −5.506 | −3.431 | −2.862 | −2.567 | 0.000 | yes |
Name | Configuration Information |
---|---|
Operating system | Ubuntu 20.04.2 |
Programming language | Python 3.7.0 |
Framework | TensorFlow 2.5.0 + cuda 11.2.2 |
Key software packages | Pmdarima 1.8.0, Statsmodels 0.13.2, Numpy 1.21.6 |
CPU | Intel(R) Xeon(R) W-2225 CPU @ 4.10 GHz |
GPU | NVIDIA RTX A6000 (51 GB) |
Memory | 263 GB |
Parameter | Search Range | Optimal Value |
---|---|---|
Number of neurons in the first layer of BiLSTM | [1, 500] | 462 |
Number of neurons in the second layer of BiLSTM | [1, 500] | 214 |
Number of neurons in the third layer of BiLSTM | [1, 500] | 270 |
Learning rate | [0.00001, 0.0005] | 0.0004 |
Dropout rate of the second layer | [0.01, 0.9] | 0.7712 |
Dropout rate of the third layer | [0.01, 0.9] | 0.3356 |
Epoch | [1, 500] | 428 |
Model | MSE | MAE | MAPE |
---|---|---|---|
BP | 10.7005 | 2.6118 | 3.4529% |
RNN | 9.0299 | 2.2936 | 3.7891% |
LSTM | 7.3952 | 2.0171 | 2.9431% |
GRU | 7.9237 | 1.9694 | 2.8069% |
Transformer | 6.7999 | 1.9087 | 2.8738% |
WOA-BiLSTM-ARIMA | 5.8141 | 1.7097 | 2.2301% |
Model | MSE | MAE | MAPE |
---|---|---|---|
ARIMA | 7.5961 | 2.3605 | 3.1273% |
BiLSTM | 6.8977 | 1.8568 | 2.9124% |
WOA-BiLSTM | 6.5556 | 1.8043 | 2.7328% |
BiLSTM-ARIMA | 6.3493 | 1.7544 | 2.5832% |
WOA-BiLSTM-ARIMA | 5.8141 | 1.7097 | 2.2301% |
Compare Model | P | GWstat |
---|---|---|
BP vs. Base | 2.16 × 10−186 | 153.8471 |
RNN vs. Base | 6.21 × 10−170 | 153.6385 |
LSTM vs. Base | 4.36 × 10−162 | 138.9683 |
GRU vs. Base | 2.37 × 10−158 | 140.3954 |
Transformer vs. Base | 2.79 × 10−41 | 138.3965 |
BiLSTM vs. Base | 6.08 × 10−161 | 132.6079 |
ARIMA vs. Base | 3.76 × 10−169 | 102.3917 |
WOA-BiLSTM vs. Base | 4.28 × 10−48 | 20.5941 |
BiLSTM-ARIMA vs. Base | 1.06 × 10−25 | 10.4884 |
Fold | Training Period | Testing Period | MSE | MAE | MAPE |
---|---|---|---|---|---|
1 | 2014-09 to 2021-01 | 2022-01 to 2022-07 | 6.4452 | 1.8738 | 6.58% |
2 | 2014-09 to 2022-07 | 2022-07 to 2023-01 | 5.3846 | 1.6128 | 2.01% |
3 | 2014-09 to 2023-01 | 2023-01 to 2023-07 | 4.8637 | 1.5781 | 1.19% |
4 | 2014-09 to 2023-07 | 2023-07 to 2024-01 | 5.7472 | 1.6753 | 1.68% |
5 | 2014-09 to 2024-01 | 2024-01 to 2024-07 | 4.2137 | 1.2694 | 1.08% |
Indictor | R-Breaker | R-Breaker-WB | R-Breaker-WBA |
---|---|---|---|
Initial capital | 50,000 | 50,000 | 50,000 |
Ending capital | 58,450.6 | 75,849.6 | 102,846.7 |
Total profit/loss | 8450.6 | 25,849.6 | 52,846.7 |
Average profit/loss | 43.3 | 311.5 | 89.3 |
Return rate | 16.9% | 51.7% | 105.7% |
Annualized return rate | 3.38% | 10.34% | 21.14% |
Total number of trades | 195 | 102 | 429 |
Total number of profitable trades | 112 | 65 | 256 |
Average profit | 198.5 | 905.3 | 692.4 |
Maximum profit | 1008.3 | 4201.6 | 5923.8 |
Number of losing trades | 83 | 37 | 173 |
Average loss | −162.4 | −534.8 | −702.1 |
Maximum loss | −1236.7 | −2311.9 | −4917.2 |
Maximum drawdown ratio | 0.62% | 1.29% | 1.76% |
Maximum drawdown amount | 310.4 | 645.27 | 1427.8 |
Sharpe ratio | −0.74 | 0.43 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, P.; Ye, B.; Li, Y.; Cai, Z.; Gao, Z.; Qi, H.; Ding, Y. Hybrid BiLSTM-ARIMA Architecture with Whale-Driven Optimization for Financial Time Series Forecasting. Algorithms 2025, 18, 517. https://doi.org/10.3390/a18080517
Qin P, Ye B, Li Y, Cai Z, Gao Z, Qi H, Ding Y. Hybrid BiLSTM-ARIMA Architecture with Whale-Driven Optimization for Financial Time Series Forecasting. Algorithms. 2025; 18(8):517. https://doi.org/10.3390/a18080517
Chicago/Turabian StyleQin, Panke, Bo Ye, Ya Li, Zhongqi Cai, Zhenlun Gao, Haoran Qi, and Yongjie Ding. 2025. "Hybrid BiLSTM-ARIMA Architecture with Whale-Driven Optimization for Financial Time Series Forecasting" Algorithms 18, no. 8: 517. https://doi.org/10.3390/a18080517
APA StyleQin, P., Ye, B., Li, Y., Cai, Z., Gao, Z., Qi, H., & Ding, Y. (2025). Hybrid BiLSTM-ARIMA Architecture with Whale-Driven Optimization for Financial Time Series Forecasting. Algorithms, 18(8), 517. https://doi.org/10.3390/a18080517