Variation in the Canadian Fire Weather Index Thresholds for Increasingly Larger Fires in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Analyses
3. Results
4. Discussion
4.1. FWI Thresholds for Increasingly Larger Fires and Fire Danger Rating
4.2. Regional Variation in Fire-Size Response to the FWI
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.; Herrera, S.; Tourigny, E.; Chuvieco, E.; Provenzale, A. A comparison of remotely-sensed and inventory datasets for burned area in Mediterranean Europe. Int. J. Appl. Earth Obs. 2019, 82, 101887. [Google Scholar] [CrossRef] [Green Version]
- Mateus, P.; Fernandes, P.M. Forest Fires in Portugal: Dynamics, Causes and Policies. In Forest Context and Policies in Portugal; Reboredo, F., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 97–115. [Google Scholar]
- Martell, D.L. Forest Fire Management. In Handbook of Operations Research In Natural Resources; Weintraub, A., Romero, C., Bjørndal, T., Epstein, R., Miranda, J., Eds.; Springer: Boston, MA, USA, 2007; pp. 489–509. [Google Scholar]
- Wotton, B.M. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ. Ecol. Stat. 2009, 16, 107–131. [Google Scholar] [CrossRef]
- Stocks, B.J.; Lynham, T.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.V.; McAlpine, R.S.; Dube, D.E. Canadian forest fire danger rating system: An overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef]
- Burgan, R.E. 1988 Revisions to the 1978 National Fire-Danger Rating System; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1988; p. 144.
- Matthews, S. A comparison of fire danger rating systems for use in forests. Aust. Meteorol. Ocean. 2009, 58, 41. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report 35; Canadian Forest Service: Ottawa, ON, Canada, 1987; p. 35. [Google Scholar]
- Palheiro, P.M.; Fernandes, P.; Cruz, M.G. A fire behaviour-based fire danger classification for maritime pine stands: Comparison of two approaches. For. Ecol. Manag. 2006, 234, S54. [Google Scholar] [CrossRef]
- Andrews, P.L.; Loftsgaarden, D.O.; Bradshaw, L.S. Evaluation of fire danger rating indexes using logistic regression and percentile analysis. Int. J. Wildland Fire 2003, 12, 213–226. [Google Scholar] [CrossRef]
- DaCamara, C.C.; Calado, T.J.; Ermida, S.L.; Trigo, I.F.; Amraoui, M.; Turkman, K.F. Calibration of the Fire Weather Index over Mediterranean Europe based on fire activity retrieved from MSG satellite imagery. Int. J. Wildland Fire 2014, 23, 945–958. [Google Scholar] [CrossRef]
- Davies, G.M.; Legg, C.J. Regional variation in fire weather controls the reported occurrence of Scottish wildfires. PeerJ 2016, 4, e2649. [Google Scholar] [CrossRef] [Green Version]
- De Jong, M.C.; Wooster, M.J.; Kitchen, K.; Manley, C.; Gazzard, R.; McCall, F.F. Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the United Kingdom. Nat. Hazard Earth Sys. 2016, 16, 1217–1237. [Google Scholar] [CrossRef] [Green Version]
- Šturm, T.; Fernandes, P.M.; Šumrada, R. The Canadian fire weather index system and wildfire activity in the Karst forest management area, Slovenia. Eur. J. For. Res. 2012, 131, 829–834. [Google Scholar] [CrossRef]
- Amatulli, G.; Camia, A.; San-Miguel-Ayanz, J. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci. Total Environ. 2013, 450–451, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Flannigan, M.D.; Logan, K.; Miranda, A.I.; Borrego, C. Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System. Int. J. Wildland Fire 2008, 17, 328–338. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; LeSager, P.; Moriondo, M.; Bindi, M.; Karali, A.; Hatzaki, M.; Kostopoulou, E. Comparison of fire danger indices in the Mediterranean for present day conditions. iForest 2012, 5, 197. [Google Scholar] [CrossRef]
- Jiménez-Ruano, A.; Mimbrero, M.R.; Jolly, W.M.; de la Riva Fernández, J. The role of short-term weather conditions in temporal dynamics of fire regime features in mainland Spain. J. Environ. Manag. 2019, 241, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Padilla, M.; Vega-García, C. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int. J. Wildland Fire 2011, 20, 46–58. [Google Scholar] [CrossRef]
- Papakosta, P.; Straub, D. Probabilistic prediction of daily fire occurrence in the Mediterranean with readily available spatio-temporal data. iForest 2016, 10, 32. [Google Scholar] [CrossRef]
- Urbieta, I.R.; Zavala, G.; Bedia, J.; Gutiérrez, J.M.; Miguel-Ayanz, J.S.; Camia, A.; Keeley, J.E.; Moreno, J.M. Fire activity as a function of fire—weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environ. Res. Lett. 2015, 10, 114013. [Google Scholar] [CrossRef]
- Venäläinen, A.; Korhonen, N.; Hyvärinen, O.; Koutsias, N.; Xystrakis, F.; Urbieta, I.R.; Moreno, J.M. Temporal variations and change in forest fire danger in Europe for 1960–2012. Nat. Hazards Earth Sys. 2014, 14, 1477–1490. [Google Scholar] [CrossRef]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire risk estimation in the Mediterranean area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Barros, A.M.G.; Pinto, A.; Santos, J.A. Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. J. Geophys. Res. Biogeo 2016, 121, 2141–2157. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Pacheco, A.P.; Almeida, R.; Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 2016, 135, 253–262. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Monteiro-Henriques, T.; Guiomar, N.; Loureiro, C.; Barros, A.M.G. Bottom-up variables govern large-fire size in Portugal. Ecosystems 2016, 19, 1362–1375. [Google Scholar] [CrossRef]
- Lahaye, S.; Curt, T.; Fréjaville, T.; Sharples, J.; Paradis, L.; Hély, C. What are the drivers of dangerous fires in Mediterranean France? Int. J. Wildland Fire 2018, 27, 155–163. [Google Scholar] [CrossRef]
- Strauss, D.; Bednar, L.; Mees, R. Do one percent of the forest fires cause ninety-nine percent of the damage? For. Sci. 1989, 35, 319–328. [Google Scholar]
- Lannom, K.O.; Tinkham, W.T.; Smith, A.M.S.; Abatzoglou, J.; Newingham, B.A.; Hall, T.E.; Morgan, P.; Strand, E.K.; Paveglio, T.B.; Anderson, J.W.; et al. Defining extreme wildland fires using geospatial and ancillary metrics. Int. J. Wildland Fire 2014, 23, 322–337. [Google Scholar] [CrossRef]
- Cui, W.; Perera, A.H. What do we know about forest fire size distribution, and why is this knowledge useful for forest management? Int. J. Wildland Fire 2008, 17, 234–244. [Google Scholar] [CrossRef]
- Arienti, M.C.; Cumming, S.G.; Boutin, S. Empirical models of forest fire initial attack success probabilities: The effects of fuels, anthropogenic linear features, fire weather, and management. Can. J. For. Res. 2006, 36, 3155–3166. [Google Scholar] [CrossRef]
- Fang, L.; Yang, J.; Zu, J.; Li, G.; Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 2015, 356, 2–12. [Google Scholar] [CrossRef]
- Moreira, F.; Catry, F.X.; Rego, F.; Bacao, F. Size-dependent pattern of wildfire ignitions in Portugal: When do ignitions turn into big fires? Landsc. Ecol. 2010, 25, 1405–1417. [Google Scholar] [CrossRef]
- Ruffault, J.; Mouillot, F. Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. Int. J. Wildland Fire 2017, 26, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Price, O.F.; Penman, T.; Bradstock, R.; Borah, R. The drivers of wildfire enlargement do not exhibit scale thresholds in southeastern Australian forests. J. Environ. Manag. 2016, 181, 208–217. [Google Scholar]
- Whitman, E.; Batllori, E.; Parisien, M.-A.; Miller, C.; Coop, J.D.; Krawchuk, M.A.; Chong, G.W.; Haire, S.L. The climate space of fire regimes in north-western North America. J. Biogeogr. 2015, 42, 1736–1749. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth: The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Miller, C.; Parks, S.A.; DeLancey, E.R.; Robinne, F.-N.; Flannigan, M.D. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 2016, 11, 075005. [Google Scholar] [CrossRef] [Green Version]
- Syphard, A.D.; Keeley, J.E.; Pfaff, A.H.; Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13750–13755. [Google Scholar] [CrossRef] [Green Version]
- Ruffault, J.; Mouillot, F. How a new fire-suppression policy can abruptly reshape the fire-weather relationship. Ecosphere 2015, 6, art199. [Google Scholar] [CrossRef]
- Bedia, J.; Herrera, S.; Gutiérrez, J.M. Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain. Nat. Hazards Earth Sys. 2014, 14, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Ruano, A.; Mimbrero, M.R.; de la Riva Fernández, J. Understanding wildfires in mainland Spain. A comprehensive analysis of fire regime features in a climate-human context. Appl. Geogr. 2017, 89, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; Sousa, P.M.; Pereira, M.G.; Rasilla, D.; Gouveia, C.M. Modelling wildfire activity in Iberia with different atmospheric circulation weather types. Int. J. Climatol. 2016, 36, 2761–2778. [Google Scholar]
- Costa, L.; Thonicke, K.; Poulter, B.; Badeck, F.-W. Sensitivity of Portuguese forest fires to climatic, human, and landscape variables: Subnational differences between fire drivers in extreme fire years and decadal averages. Reg. Environ. Change 2011, 11, 543–551. [Google Scholar] [CrossRef]
- Marques, S.; Borges, J.G.; Garcia-Gonzalo, J.; Moreira, F.; Carreiras, J.M.B.; Oliveira, M.M.; Cantarinha, A.; Botequim, B.; Pereira, J.M.C. Characterization of wildfires in Portugal. Eur. J. For. Res. 2011, 130, 775–784. [Google Scholar] [CrossRef]
- Sá, A.C.L.; Turkman, M.A.A.; Pereira, J.M.C. Exploring fire incidence in Portugal using generalized additive models for location, scale and shape (GAMLSS). Model. Earth Syst. Environ. 2018, 4, 199–220. [Google Scholar] [CrossRef]
- Moreno, M.V.; Conedera, M.; Chuvieco, E.; Pezzatti, G.B. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ. Sci. Policy 2014, 37, 11–22. [Google Scholar] [CrossRef]
- ICNF. Available online: http://www2.icnf.pt/portal/florestas/dfci/inc/estat-sgif (accessed on 20 August 2019).
- ICNF—Cartografia da área Ardida. Available online: http://www2.icnf.pt/portal/florestas/dfci/inc/mapas (accessed on 20 August 2019).
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2010, 18, 921–931. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. HANPP Collection: Global Patterns in Net Primary Productivity (NPP); SEDAC: Palisades, NY, USA, 2004. [Google Scholar]
- Imhoff, M.L.; Bounoua, L. Exploring global patterns of net primary production carbon supply and demand using satellite observations and statistical data. J. Geophys. Res.-Atmos. 2006, 111, D22. [Google Scholar] [CrossRef]
- ICNF, Relatório Final IFN5—FloreStat. Available online: http://www2.icnf.pt/portal/florestas/ifn/ifn5/rel-fin (accessed on 20 August 2019).
- Fernandes, P.M. Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann. For. Sci. 2009, 66, 415. [Google Scholar] [CrossRef]
- Barros, A.M.G.; Pereira, J.M.C. Wildfire selectivity for land cover type: Does size matter? PLoS ONE 2014, 9, e84760. [Google Scholar] [CrossRef]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- Jolly, W.M.; Freeborn, P.H.; Page, W.G.; Butler, B.W. Severe fire danger index: A forecastable metric to inform firefighter and community wildfire risk management. Fire 2019, 2, 47. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: New York, NY, USA, 2000; p. 375. [Google Scholar]
- Amraoui, M.; Pereira, M.G.; DaCamara, C.C.; Calado, T.J. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Sci. Total Environ. 2015, 524–525, 32–39. [Google Scholar]
- Cruz, M.G.; Alexander, M.E. The 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread in forests and shrublands. Ann. For. Sci. 2019, 76, 44. [Google Scholar]
- Potter, B.E. Atmospheric interactions with wildland fire behaviour—II. Plume and vortex dynamics. Int. J. Wildland Fire 2012, 21, 802–817. [Google Scholar]
- Viedma, O.; Angeler, D.G.; Moreno, J.M. Landscape structural features control fire size in a Mediterranean forested area of central Spain. Int. J. Wildland Fire 2009, 18, 575–583. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Loureiro, C.; Magalhães, M.; Ferreira, P.; Fernandes, M. Fuel age, weather and burn probability in Portugal. Int. J. Wildland Fire 2012, 21, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Koutsias, N.; Arianoutsou, M.; Kallimanis, A.S.; Mallinis, G.; Halley, J.M.; Dimopoulos, P. Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agr. For. Meteorol. 2012, 156, 41–53. [Google Scholar]
- Abatzoglou, J.T.; Balch, J.K.; Bradley, B.A.; Kolden, C.A. Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildland Fire 2018, 27, 377–386. [Google Scholar] [CrossRef]
- Slocum, M.G.; Beckage, B.; Platt, W.J.; Orzell, S.L.; Taylor, W. Effect of climate on wildfire size: A cross-scale analysis. Ecosystems 2010, 13, 828–840. [Google Scholar] [CrossRef]
- Nunes, A.N. Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl. Geogr. 2012, 34, 576–586. [Google Scholar] [CrossRef]
- Pausas, J.G.; Paula, S. Fuel shapes the fire—climate relationship: Evidence from Mediterranean ecosystems. Global Ecol. Biogeogr. 2012, 21, 1074–1082. [Google Scholar] [CrossRef]
- Curt, T.; Borgniet, L.; Bouillon, C. Wildfire frequency varies with the size and shape of fuel types in southeastern France: Implications for environmental management. J. Environ. Manag. 2013, 117, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Loepfe, L.; Martinez-Vilalta, J.; Oliveres, J.; Piñol, J.; Lloret, F. Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. Forest Ecol. Manag. 2010, 259, 2366–2374. [Google Scholar] [CrossRef]
Region | Popul. Density | Elevation | Slope | TRI | NPP | Land Cover Fractions | |||
---|---|---|---|---|---|---|---|---|---|
(no. km−2) | (m) | (°) | (t C year−1) | Agriculture | Shrubland | Forest | Flammable Forest * | ||
Aveiro | 261.2 | 200 (215) | 4.8 (5.0) | 36.0 (33.0) | 4.2 (0.4) | 0.25 | 0.08 | 0.53 | 0.95 |
Beja | 15.0 | 177 (77) | 2.5 (2.1) | 23.2 (18.8) | 2.9 (0.8) | 0.50 | 0.13 | 0.35 | 0.17 |
Braga | 323.2 | 356 (276) | 7.7 (5.9) | 53.8 (35.5) | 4.3 (0.3) | 0.30 | 0.27 | 0.32 | 0.82 |
Bragança | 21.9 | 610 (186) | 6.4 (4.5) | 47.6 (29.8) | 2.6 (0.5) | 0.35 | 0.34 | 0.29 | 0.39 |
Castelo Branco | 30.2 | 408 (192) | 5.1 (4.6) | 37.1 (29.7) | 3.1 (0.5) | 0.26 | 0.32 | 0.40 | 0.78 |
Coimbra | 109.5 | 270 (257) | 5.3 (5.4) | 41.5 (38.3) | 3.7 (0.4) | 0.21 | 0.17 | 0.52 | 0.96 |
Évora | 22.8 | 218 (74) | 1.7 (1.2) | 12.1 (7.7) | 3.2 (0.4) | 0.42 | 0.05 | 0.50 | 0.08 |
Faro | 87.9 | 176 (137) | 4.7 (3.7) | 46.1 (30.1) | 3.3 (1.1) | 0.26 | 0.38 | 0.26 | 0.26 |
Guarda | 30.6 | 698 (232) | 6.0 (5.4) | 44.5 (35.7) | 2.6 (0.4) | 0.28 | 0.48 | 0.19 | 0.58 |
Leiria | 135.0 | 199 (157) | 3.7 (3.2) | 27.3 (20.5) | 3.7 (0.5) | 0.27 | 0.16 | 0.45 | 0.95 |
Lisboa | 801.1 | 116 (82) | 3.2 (2.8) | 23.5 (17.4) | 3.4 (0.4) | 0.48 | 0.13 | 0.18 | 0.77 |
Portalegre | 19.8 | 272 (107) | 2.3 (2.0) | 16.2 (13.6) | 3.2 (0.4) | 0.41 | 0.11 | 0.44 | 0.22 |
Porto | 769.7 | 253 (215) | 6.2 (5.2) | 45.4 (32.7) | 4.0 (0.3) | 0.29 | 0.17 | 0.31 | 0.87 |
Santarém | 66.7 | 133 (94) | 2.4 (2.2) | 17.8 (14.7) | 3.4 (0.3) | 0.33 | 0.12 | 0.49 | 0.53 |
Setúbal | 164.4 | 78 (56) | 1.8 (1.9) | 14.1 (12.9) | 3.1 (0.7) | 0.29 | 0.07 | 0.56 | 0.29 |
Viana do Castelo | 110.3 | 386 (3249) | 10.1 (6.3) | 68.0 (36.8) | 4.5 (0.2) | 0.21 | 0.38 | 0.30 | 0.74 |
Vila Real | 49.5 | 698 (245) | 8.3 (5.4) | 58.2 (32.4) | 3.2 (0.4) | 0.25 | 0.39 | 0.32 | 0.74 |
Viseu | 77.3 | 562 (239) | 7.5 (5.8) | 53.5 (33.5) | 3.3 (0.7) | 0.24 | 0.26 | 0.45 | 0.84 |
Region | Fire Size (ha) | ||||||
---|---|---|---|---|---|---|---|
0.01 | 0.1 | 1 | 10 | 100 | 500 | 1000 | |
Aveiro | 59.4 | 45.1 | 23.7 | 4.9 | 0.9 | 0.3 | 0.2 |
Beja | 28.6 | 24.8 | 18.3 | 6.2 | 1.3 | 0.3 | 0.1 |
Braga | 57.3 | 51.1 | 38.2 | 11.9 | 2.3 | 0.4 | 0.1 |
Bragança | 51.3 | 47.7 | 36.6 | 11.7 | 3.3 | 0.8 | 0.4 |
Castelo Branco | 44.5 | 36.0 | 24.1 | 5.9 | 2.3 | 1.1 | 0.7 |
Coimbra | 45.2 | 32.1 | 14.9 | 3.3 | 1.3 | 0.6 | 0.4 |
Évora | 23.9 | 20.8 | 13.5 | 4.1 | 1.0 | 0.3 | 0.2 |
Faro | 34.3 | 23.3 | 13.8 | 2.6 | 0.9 | 0.4 | 0.3 |
Guarda | 54.4 | 49.2 | 41.1 | 15.6 | 5.2 | 1.5 | 0.8 |
Leiria | 50.2 | 36.3 | 18.0 | 3.4 | 1.2 | 0.5 | 0.2 |
Lisboa | 62.8 | 47.6 | 35.6 | 3.6 | 0.5 | 0.1 | 0.1 |
Portalegre | 25.9 | 20.9 | 13.1 | 3.2 | 0.7 | 0.3 | 0.2 |
Porto | 62.0 | 51.3 | 35.5 | 9.4 | 1.9 | 0.5 | 0.1 |
Santarém | 55.1 | 42.4 | 25.9 | 5.0 | 1.9 | 0.8 | 0.3 |
Setúbal | 50.9 | 33.8 | 21.1 | 2.9 | 0.6 | 0.1 | 0.1 |
Viana do Castelo | 51.0 | 44.8 | 34.4 | 11.5 | 2.6 | 0.6 | 0.2 |
Vila Real | 58.3 | 48.4 | 40.9 | 13.1 | 3.9 | 1.1 | 0.4 |
Viseu | 59.5 | 52.4 | 39.4 | 11.5 | 3.6 | 1.1 | 0.5 |
Region | Fire Size (ha) | ||||||
---|---|---|---|---|---|---|---|
0.01 | 0.1 | 1 | 10 | 100 | 500 | 1000 | |
Aveiro | 0.6 (0.88; 0.11) | 6.6 (0.83; 0.24) | 19.1 (0.76; 0.29) | 38.5 (0.80; 0.07) | 48.7 (0.89; 0.01) | 53.7 (0.93; <0.01) | 58.8 (0.91; <0.01) |
Beja | 10.0 (0.73; 0.24) | 18.5 (0.71; 0.29) | 33.8 (0.71; 0.35) | 63.7 (0.73; 0.16) | 69.5 (0.89; 0.03) | 84.3 (0.89; 0.01) | - |
Braga | 0.0 (0.89; 0.11) | 2.3 (0.87; 0.14) | 9.5 (0.80; 0.28) | 30.8 (0.84; 0.14) | 45.1 (0.92; 0.04) | 54.6 (0.94; 0.01) | 61.0 (0.36; <0.01) |
Bragança | 0.0 (0.76; 0.10) | 0.0 (0.75; 0.16) | 9.2 (0.72; 0.32) | 45.8 (0.79; 0.20) | 62.4 (0.86; 0.06) | 79.9 (0.83; 0.01) | 90.1 (0.86; 0.01) |
Castelo Branco | 0.0 (0.74; 0.12) | 9.3 (0.72; 0.28) | 31.3 (0.70; 0.35) | 61.2 (0.81; 0.18) | 68.9 (0.87; 0.05) | 76.9 (0.89; 0.02) | 79.5 (0.90; 0.01) |
Coimbra | 0.0 (0.77; 0.22) | 12.2 (0.75; 0.33) | 31.1 (0.76; 0.22) | 50.3 (0.84; 0.06) | 58.5 (0.83; 0.02) | 66.0 (0.88; 0.01) | 75.0 (0.85; 0.01) |
Évora | 23.7 (0.75; 0.29) | 29.6 (0.74; 0.32) | 46.6 (0.73; 0.30) | 68.5 (0.80; 0.10) | 81.1 (0.88; 0.02) | 93.1 (0.93; 0.01) | 94.2 (0.96; 0.01) |
Faro | 14.1 (0.76; 0.24) | 29.1 (0.72; 0.34) | 43.8 (0.73; 0.26) | 65.2 (0.80; 0.05) | 78.5 (0.86; 0.02) | - | - |
Guarda | 0.0 (0.76; 0.17) | 0.0 (0.78; 0.24) | 7.8 (0.75; 0.31) | 38.9 (0.79; 0.21) | 53.4 (0.87; 0.08) | 63.6 (0.92; 0.02) | 77.9 (0.93; 0.01) |
Leiria | 1.7 (0.82; 0.17) | 11.4 (0.77; 0.25) | 27.6 (0.76; 0.24) | 43.5 (0.89; 0.06) | 50.9 (0.93; 0.02) | 56.3 (0.94; 0.01) | 58.3 (0.97; <0.01) |
Lisboa | 0.5 (0.88; 0.12) | 9.5 (0.86; 0.23) | 17.1 (0.83; 0.24) | 47.4 (0.88; 0.04) | 61.7 (0.94; 0.01) | 72.9 (0.93; <0.01) | - |
Portalegre | 16.8 (0.68; 0.33) | 30.5 (0.68; 0.36) | 52.3 (0.67; 0.32) | 75.6 (0.77; 0.08) | 81.5 (0.85; 0.02) | - | 88.3 (0.92; 0.01) |
Porto | 0.2 (0.91; 0.09) | 4.4 (0.90; 0.15) | 11.1 (0.87; 0.21) | 31.4 (0.87; 0.12) | 47.8 (0.94; 0.03) | 62.7 (0.96; 0.01) | 88.2 (0.97; <0.01) |
Santarém | 0.4 (0.84; 0.13) | 11.3 (0.78; 0.26) | 27.4 (0.77; 0.29) | 47.8 (0.88; 0.08) | 53.7 (0.32; 0.03) | 58.9 (0.93; 0.01) | 66.3 (0.93; 0.01) |
Setúbal | 8.2 (0.86; 0.19) | 20.9 (0.80; 0.27) | 33.1 (0.77; 0.27) | 59.3 (0.82; 0.04) | 65.4 (0.91; 0.01) | 65.5 (0.98; <0.01) | 67.7 (>0.99; <0.01) |
Viana do Castelo | 0.0 (0.82; 0.12) | 1.7 (0.79; 0.20) | 7.8 (0.77; 0.32) | 26.0 (0.78; 0.17) | 36.5 (0.88; 0.04) | 43.0 (0.94; 0.01) | 45.3 (0.99; 0.01) |
Vila Real | 0.0 (0.85; 0.07) | 0.6 (0.79; 0.19) | 5.8 (0.76; 0.29) | 30.5 (0.80; 0.18) | 41.2 (0.88; 0.06) | 50.6 (0.91; 0.02) | 54.2 (0.95; 0.01) |
Viseu | 0.0 (0.83; 0.10) | 0.6 (0.81; 0.19) | 10.0 (0.77; 0.30) | 38.5 (0.82; 0.16) | 51.2 (0.90; 0.05) | 62.6 (0.92; 0.02) | 71.8 (0.91; 0.01) |
Fire-Size Thresholds | FWI | |||||||
---|---|---|---|---|---|---|---|---|
0.1 | 1 | 10 | 100 | 500 | 1000 | Median | 90th Perc. | |
0.01 | 0.902 | 0.819 | 0.789 | 0.794 | 0.673 ** | 0.541 * | 0.719 | 0.666 ** |
0.1 | 0.963 | 0.889 | 0.827 | 0.655 ** | 0.483 * | 0.853 | 0.620 ** | |
1 | 0.928 | 0.851 | 0.677 ** | 0.501 * | 0.828 | 0.668 ** | ||
10 | 0.969 | 0.834 | 0.659 ** | 0.875 | 0.859 | |||
100 | 0.922 | 0.786 | 0.819 | 0.888 | ||||
500 | 0.879 | 0.697 ** | 0.839 | |||||
1000 | 0.525 * | 0.717 |
Variable | 1 ha | 100 ha | 1000 ha |
---|---|---|---|
Popul. density | *0.22 (−) | ||
Elevation | 0.44 (−) | ||
TRI | 0.56 (−) | 0.48 (−) | |
NPP | 0.33 (−) | 0.29 (−) | |
Land cover fractions | |||
Agriculture | 0.33 (+) | ||
Shrubland | 0.39 (−) | ||
Forest | 0.24 (−) | ||
Flammable forest | 0.32 (−) | 0.54 (−) | 0.32 (−) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, P.M. Variation in the Canadian Fire Weather Index Thresholds for Increasingly Larger Fires in Portugal. Forests 2019, 10, 838. https://doi.org/10.3390/f10100838
Fernandes PM. Variation in the Canadian Fire Weather Index Thresholds for Increasingly Larger Fires in Portugal. Forests. 2019; 10(10):838. https://doi.org/10.3390/f10100838
Chicago/Turabian StyleFernandes, Paulo M. 2019. "Variation in the Canadian Fire Weather Index Thresholds for Increasingly Larger Fires in Portugal" Forests 10, no. 10: 838. https://doi.org/10.3390/f10100838
APA StyleFernandes, P. M. (2019). Variation in the Canadian Fire Weather Index Thresholds for Increasingly Larger Fires in Portugal. Forests, 10(10), 838. https://doi.org/10.3390/f10100838