White-Rot Fungi Control on Populus spp. Wood by Pressure Treatments with Silver Nanoparticles, Chitosan Oligomers and Propolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Biological Material
2.2. Synthesis of the Antifungal Solutions
2.3. Vacuum-Pressure Treatments and Antifungal Tests
2.4. Wood Degradation Monitoring
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karimi, A.; Taghiyari, H.R.; Fattahi, A.; Karimi, S.; Ebrahimi, G.; Tarmian, A. Effects of wollastonite nanofibers on biological durability of poplar wood (Populus nigra) against Trametes versicolor. BioResources 2013, 8, 4134. [Google Scholar] [CrossRef]
- Casado, M.; Acuña, L.; Basterra, L.-A.; Ramón-Cueto, G.; Vecilla, D. Grading of structural timber of Populus × euramericana clone I-214. Holzforschung 2012, 66, 633. [Google Scholar] [CrossRef]
- Todaro, L.; Russo, D.; Cetera, P.; Milella, L. Effects of thermo-vacuum treatment on secondary metabolite content and antioxidant activity of poplar (Populus nigra L.) wood extracts. Ind. Crop. Prod. 2017, 109, 384–390. [Google Scholar] [CrossRef]
- Kollert, W.; Borodowski, E.D. Situación de las Salicáceas en el Mundo. In Proceedings of the Jornadas de Saliáceas 2014—IV Congreso Internacional de Salicáceas en Argentina, Buenos Aires, Argentina, 18–21 March 2014; p. 10. [Google Scholar]
- Diaz, B.; Murace, M.; Peri, P.; Keil, G.; Luna, L.; Otaño, M.Y. Natural and preservative-treated durability of Populus nigra cv Italica timber grown in Santa Cruz Province, Argentina. Int. Biodeterior. Biodegrad. 2003, 52, 43–47. [Google Scholar] [CrossRef]
- Xing, J.-Q.; Ikuo, M.; Wakako, O. Natural resistance of two plantation woods Populus × canadensis cv. and Cunninghamia lanceolata to decay fungi and termites. For. Stud. China 2005, 7, 36–39. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Singh, T.; Singh, A.P. A review on natural products as wood protectant. Wood Sci. Technol. 2011, 46, 851–870. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustainable Chem. Eng. 2014, 2, 2637–2652. [Google Scholar] [CrossRef]
- Quiroga, E.N.; Sampietro, D.A.; Soberon, J.R.; Sgariglia, M.A.; Vattuone, M.A. Propolis from the northwest of Argentina as a source of antifungal principles. J. Appl. Microbiol. 2006, 101, 103–110. [Google Scholar] [CrossRef]
- Torlak, E.; Sert, D. Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens. Int. J. Biol. Macromol. 2013, 60, 52–55. [Google Scholar] [CrossRef]
- Kartal, S.N.; Green, F.; Clausen, C.A. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? Int. Biodeterior. Biodegrad. 2009, 63, 490–495. [Google Scholar] [CrossRef]
- Clausen, C.A.; Yang, V.W.; Arango, R.A.; Green, F., III. Feasibility of nanozinc oxide as a wood preservative. Proc. Am. Wood Prot. Assoc. 2009, 105, 255–260. [Google Scholar]
- Matsunaga, H.; Kiguchi, M.; Evans, P.D. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood. J. Nanopart. Res. 2008, 11, 1087–1098. [Google Scholar] [CrossRef]
- Marzbani, P.; Mohammadnia-afrouzi, Y. Investigation on leaching and decay resistance of wood treated with nano-titanium dioxide. Adv. Environ. Biol. 2014, 8, 974–979. [Google Scholar]
- Nair, S.; Pandey, K.K.; Giridhar, B.N.; Vijayalakshmi, G. Decay resistance of rubberwood (Hevea brasiliensis) impregnated with ZnO and CuO nanoparticles dispersed in propylene glycol. Int. Biodeterior. Biodegrad. 2017, 122, 100–106. [Google Scholar] [CrossRef]
- Dorau, B.; Arango, R.; Green, F. An Investigation into the Potential of Ionic Silver as a Wood Preservative, Proceedings from the Woodframe Housing Durability and Disaster Issues Conference, Las Vegas, NV, USA, 4–6 October 2004; Forest Products Society: Las Vegas, NV, USA, 2004; pp. 133–145.
- Velmurugan, N.; Kumar, G.G.; Han, S.S.; Nahm, K.S.; Lee, Y.S. Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran. Polym. J. 2009, 18, 383–392. [Google Scholar]
- Kaur, P.; Thakur, R.; Choudhary, A. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int. J. Sci. Technol. Res. 2012, 1, 83–86. [Google Scholar]
- Narayanan, K.B.; Park, H.H. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur. J. Plant Pathol. 2014, 140, 185–192. [Google Scholar] [CrossRef]
- Silva-Castro, I.; Martín-García, J.; Diez, J.J.; Flores-Pacheco, J.A.; Martín-Gil, J.; Martín-Ramos, P. Potential control of forest diseases by solutions of chitosan oligomers, propolis and nanosilver. Eur. J. Plant Pathol. 2017, 150, 401–411. [Google Scholar] [CrossRef]
- Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 2018, 40, 53–58. [Google Scholar] [CrossRef]
- Ivask, A.; ElBadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C.H.; Liu, R.; Tolaymat, T.; Telesca, D.; et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 2013, 8, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Bin Ahmad, M.; Lim, J.J.; Shameli, K.; Ibrahim, N.A.; Tay, M.Y. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules 2011, 16, 7237–7248. [Google Scholar] [CrossRef] [PubMed]
- Goycoolea, F. Monografía XXVIII: Nanotecnología Farmacéutica. Available online: https://www.analesranf.com/index.php/mono/article/view/990/1024 (accessed on 7 October 2019).
- Alfredsen, G.; Eikenes, M.; Militz, H.; Solheim, H. Screening of chitosan against wood-deteriorating fungi. Scand. J. For. Res. 2011, 19, 4–13. [Google Scholar] [CrossRef]
- Xia, W.; Liu, P.; Zhang, J.; Chen, J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 2011, 25, 170–179. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.E.I.; Rabea, E.I. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol. Technol. 2009, 51, 110–117. [Google Scholar] [CrossRef]
- Silva-Castro, I.; Casados-Sanz, M.; Alonso-Cortés, A.; Martín-Ramos, P.; Martín-Gil, J.; Acuña-Rello, L. Chitosan-based coatings to prevent the decay of Populus spp. wood caused by Trametes versicolor. Coatings 2018, 8, 415. [Google Scholar] [CrossRef]
- Silva-Castro, I.; Diez, J.; Martín-Ramos, P.; Pinto, G.; Alves, A.; Martín-Gil, J.; Martín-García, J. Application of bioactive coatings based on chitosan and propolis for Pinus spp. protection against Fusarium circinatum. Forests 2018, 9, 685. [Google Scholar] [CrossRef]
- Burdock, G.A. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Matei, P.M.; Martin-Ramos, P.; Sanchez-Bascones, M.; Hernandez-Navarro, S.; Correa-Guimaraes, A.; Navas-Gracia, L.M.; Rufino, C.A.; Ramos-Sanchez, M.C.; Martin-Gil, J. Synthesis of chitosan oligomers/propolis/silver nanoparticles composite systems and study of their activity against Diplodia seriata. Int. J. Polym. Sci. 2015, 2015, 864729. [Google Scholar] [CrossRef]
- Costa, C.N.; Teixeira, V.G.; Delpech, M.C.; Souza, J.V.S.; Costa, M.A.S. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr. Polym. 2015, 133, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo-Rufino, C.; Fernandes-Vieira, J.; Martín-Ramos, P.; Silva-Castro, I.; Fernandes-Correa, M.; Matei, P.M.; Sánchez-Báscones, M.; Ramos-Sánchez, M.C.; Martín-Gil, J. Synthesis of chitosan oligomers composite systems and study of their activity against Bipolaris Oryzae. J. Mater. Sci. Eng. Adv. Technol. 2016, 13, 29–52. [Google Scholar]
- Schwarze, F.W.M.R. Wood decay under the microscope. Fungal Biol. Rev. 2007, 21, 133–170. [Google Scholar] [CrossRef]
- Akhtari, M.; Arefkhani, M. Study of microscopy properties of wood impregnated with nanoparticles during exposed to white-rot fungus. Agric. Sci. Dev. 2013, 2, 116–119. [Google Scholar]
- Larnøy, E.; Eikenes, M.; Militz, H. Evaluation of factors that have an influence on the fixation of chitosan in wood. Wood Mater. Sci. Eng. 2006, 1, 138–145. [Google Scholar] [CrossRef]
- El-Gamal, R.; Nikolaivits, E.; Zervakis, G.I.; Abdel-Maksoud, G.; Topakas, E.; Christakopoulos, P. The use of chitosan in protecting wooden artifacts from damage by mold fungi. Electron. J. Biotechnol. 2016, 24, 70–78. [Google Scholar] [CrossRef] [Green Version]
Silver Nanoparticles (ppm) | Chitosan Oligomers (mg/mL) | Propolis (mg/mL) |
---|---|---|
20 | 80 | 40 |
15 | 40 | 20 |
10 | 20 | 10 |
5 | 10 | 5 |
Exposure Period (weeks) | AgNPs Concentration (ppm) | Weight Loss (%) * | Shapiro–Wilk Test p-Value | Bartlett p-Value | ANOVA p-Value | Homogeneous Groups † | |||
---|---|---|---|---|---|---|---|---|---|
4 | Control | 13.75 ± 1.21 | 0.0532 | 0.6538 | 2.71 × 10−6 | X | |||
5 | 8.80 ± 0.09 | 0.8964 | c | ||||||
10 | 8.67 ± 0.09 | 0.8290 | b | c | |||||
15 | 8.52 ± 0.19 | 0.7587 | b | ||||||
20 | 8.33 ± 0.19 | 0.9515 | a | ||||||
8 | Control | 17.55 ± 2.26 | 0.7000 | 0.9059 | 0.00135 | X | |||
5 | 8.93 ± 0.11 | 0.6224 | c | ||||||
10 | 8.73 ± 0.18 | 0.9775 | b | c | |||||
15 | 8.59 ± 0.19 | 0.7082 | a | b | |||||
20 | 8.43 ± 0.18 | 0.8408 | a | ||||||
12 | Control | 23.86 ± 1.95 | 0.5846 | 0.7605 | 0.0542 | X | |||
5 | 8.85 ± 0.21 | 0.6889 | a | ||||||
10 | 8.74 ± 0.13 | 0.6406 | a | ||||||
15 | 8.59 ± 0.19 | 0.9706 | a | ||||||
20 | 8.43 ± 0.19 | 0.9854 | a | ||||||
16 | Control | 24.79 ± 5.21 | 0.4149 | 0.511 | 0.0291 | X | |||
5 | 8.94 ± 0.16 | 0.7192 | b | ||||||
10 | 8.81 ± 0.14 | 0.5510 | b | ||||||
15 | 8.80 ± 0.13 | 0.7146 | b | ||||||
20 | 8.49 ± 0.22 | 0.8678 | a | b |
Exposure Period (weeks) | Chitosan Oligomers Concentration (mg/mL) | Weight Loss (%) * | Shapiro–Wilk Test p-Value | Bartlett p-Value | ANOVA p-Value | Homogeneous Groups † | |||
---|---|---|---|---|---|---|---|---|---|
4 | Control | 14.54 ± 0.82 | 0.0621 | 0.1393 | 2.71 × 10−7 | X | |||
10 | 11.58 ± 1.70 | 0.6750 | c | ||||||
20 | 9.34 ± 0.78 | 0.7082 | b | c | |||||
40 | 7.91 ± 0.87 | 0.3403 | b | ||||||
80 | 4.96 ± 0.63 | 0.3632 | a | ||||||
8 | Control | 19.43 ± 3.34 | 0.5128 | 0.9059 | 0.00135 | X | |||
10 | 12.33 ± 0.75 | 0.6924 | b | ||||||
20 | 9.34 ± 0.78 | 0.6589 | b | ||||||
40 | 9.93 ± 0.81 | 0.6982 | a | b | |||||
80 | 8.92 ± 1.03 | 0.5524 | a | ||||||
12 | Control | 25.86 ± 2.50 | 0.6602 | 0.8604 | 0.0542 | X | |||
10 | 22.25 ± 1.72 | 0.9546 | a | ||||||
20 | 21.36 ± 2.16 | 0.7794 | a | ||||||
40 | 20.12 ± 1.84 | 0.6710 | a | ||||||
80 | 17.44 ± 2.47 | 0.8068 | a | ||||||
16 | Control | 32.14 ± 3.05 | 0.7002 | 0.8871 | 0.0291 | X | |||
10 | 29.95 ± 4.25 | 0.6900 | b | ||||||
20 | 21.36 ± 2.16 | 0.5467 | a | b | |||||
40 | 23.28 ± 4.27 | 0.8115 | a | b | |||||
80 | 19.35 ± 3.34 | 0.8773 | a |
Exposure Period (weeks) | Propolis Concentration (mg/mL) | Weight Loss (%) * | Shapiro–Wilk Test p-Value | Bartlett p-Value | ANOVA p-Value | Homogeneous Groups † | |||
---|---|---|---|---|---|---|---|---|---|
4 | Control | 14.212 ± 2.065 | 0.3225 | 0.863 | 7.91 × 10−8 | X | |||
5 | 13.742 ± 0.650 | 0.8964 | c | ||||||
10 | 12.116 ± 0.565 | 0.4721 | b | ||||||
20 | 11.113 ± 0.627 | 0.9877 | b | ||||||
40 | 9.775 ± 0.458 | 0.9794 | a | ||||||
8 | Control | 19.897 ± 1.801 | 0.505 | 0.5844 | 5.68 × 10−7 | X | |||
5 | 17.870 ± 1.383 | 0.829 | c | ||||||
10 | 15.416 ± 0.955 | 0.9422 | b | ||||||
20 | 12.587 ± 1.561 | 0.8152 | a | ||||||
40 | 11.115 ± 0.877 | 0.6586 | a | ||||||
12 | Control | 21.036 ± 3.141 | 0.770 | 0.5511 | 0.713 | X | |||
5 | 19.892 ± 1.620 | 0.7587 | b | ||||||
10 | 18.639 ± 1.321 | 0.8894 | b | ||||||
20 | 17.413 ± 1.053 | 0.8444 | a | ||||||
40 | 16.288 ± 0.810 | 0.7739 | a | ||||||
16 | Control | 28.795 ± 2.841 | 0.2954 | 0.9257 | 0.00014 | X | |||
5 | 24.934 ± 2.133 | 0.9515 | c | ||||||
10 | 22.456 ± 1.614 | 0.8911 | b | c | |||||
20 | 19.439 ± 1.664 | 0.7038 | b | ||||||
40 | 17.105 ± 1.690 | 0.2817 | a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casado-Sanz, M.M.; Silva-Castro, I.; Ponce-Herrero, L.; Martín-Ramos, P.; Martín-Gil, J.; Acuña-Rello, L. White-Rot Fungi Control on Populus spp. Wood by Pressure Treatments with Silver Nanoparticles, Chitosan Oligomers and Propolis. Forests 2019, 10, 885. https://doi.org/10.3390/f10100885
Casado-Sanz MM, Silva-Castro I, Ponce-Herrero L, Martín-Ramos P, Martín-Gil J, Acuña-Rello L. White-Rot Fungi Control on Populus spp. Wood by Pressure Treatments with Silver Nanoparticles, Chitosan Oligomers and Propolis. Forests. 2019; 10(10):885. https://doi.org/10.3390/f10100885
Chicago/Turabian StyleCasado-Sanz, María Milagrosa, Iosody Silva-Castro, Laura Ponce-Herrero, Pablo Martín-Ramos, Jesús Martín-Gil, and Luis Acuña-Rello. 2019. "White-Rot Fungi Control on Populus spp. Wood by Pressure Treatments with Silver Nanoparticles, Chitosan Oligomers and Propolis" Forests 10, no. 10: 885. https://doi.org/10.3390/f10100885