Propagation of Juniper Species by Plant Tissue Culture: A Mini-Review
Abstract
:1. Introduction
2. Seed Germination
3. Seed Germination In Vitro
4. Micropropagation
4.1. Explant Sterilization Methods
4.2. Callus Induction from Different Explants
4.3. Axillary Shoot Multiplication
4.4. Adventitious Shoot Multiplication
4.5. Rooting and Acclimatization
4.6. Somatic Embryogenesis
5. Saving Endangered Juniper spp. by In Vitro Cultures
6. Future Prospects
Funding
Acknowledgments
Conflicts of Interest
References
- Seneta, W. Drzewa i Krzewy Iglaste; Część, I., Ed.; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1987; pp. 202–206. (In Polish) [Google Scholar]
- Loureiro, J.; Capelo, A.; Brito, G.; Rodriguez, E.; Silva, S.; Pinto, G.; Santos, C. Micropropagation of Juniperus phoenica from adult plant explants and analysis of ploidy stability using flow cytometry. Biol. Plant. 2007, 51, 7–14. [Google Scholar] [CrossRef]
- Zaidi, M.A.; Khan, S.; Jahan, N.; Yousafzai, A.; Mansoor, A. Micropropagation and conservation of tree Juniperus species (Cupressaceae). Pak. J. Bot. 2012, 44, 301–304. [Google Scholar]
- Castro, M.R.; Belo, A.F.; Afonso, A.; Zavattieri, M.A. Micropropagation of Juniperus navicularis, and endemic and rare species from Portugal SW coast. Plant Growth Regul. 2011, 65, 223–230. [Google Scholar] [CrossRef]
- Helmersson, A.; von Arnold, S. Embryogenic cell lines of Juniperus communis; easy establishment and embryo maturation, limited germination. Plant Cell Tiss. Organ Cult. 2009, 96, 211–217. [Google Scholar] [CrossRef]
- Ahani, H.; Jalilvand, H.; Hosseini Nasr, S.M.; Soltani Kouhbanani, H.; Ghazi, M.R.; Mohammadzadeh, H. Reproduction of juniper (Juniperus polycarpos) in Khorasan Razavi, Iran. For. Sci. Pract. 2013, 15, 231–237. [Google Scholar] [CrossRef]
- Al-Ramamneh, E.A.; Dura, S.; Daradkeh, N. Propagation physiology of Juniperus phoenica L. from Jordan using seeds and in vitro culture techniques: Baseline information for a conservation perspective. Afr. J. Biotechnol. 2012, 11, 7684–7692. [Google Scholar]
- Hernández, J.E.; Clemente, M. Protección de la Flora en Andalucía [Protection of the Andalusian Flora]; Agencia Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 1994. [Google Scholar]
- Momeni, M.; Ganji-Moghadam, E.; Kazemzadeh-Beneh, H.; Asgharzadeh, A. Direct organogenesis from shoot tip explants of Juniperus polycarpos L.: Optimizing basal media and plant growth regulators on proliferation and root formation. PCBMB 2018, 19, 40–50. [Google Scholar]
- Cantos, M.; Cuerva, J.; Zárate, R.; Troncoso, A. Embryo rescue and development of Juniperus oxycedrus subsp. oxycedrus and macrocarpa. Seed Sci. Technol. 1998, 26, 193–198. [Google Scholar]
- Mamo, N.; Nigusie, D.; Tigabu, M.; Teketay, D.; Fekadu, M. Longevity of Juniperus procera seed lots under different storage conditions: Implications for ex situ conservation in seed banks. J. For. Res. 2011, 22, 453–459. [Google Scholar] [CrossRef]
- Ilashi, I. Juniper (Juniperus polycarpos C. Koch). In Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 321–325. [Google Scholar]
- Muranaka, T.; Miyata, M.; Ito, K.; Tachibana, S. Production of podophyllotoxin in Juniperus chinensis callus cultures treated with oligosaccharides and biogenetic precursor. Phytochemistry 1998, 49, 491–496. [Google Scholar] [CrossRef]
- Kentelky, E. The analysis of rooting and growth peculiarities of Juniperus species propagated by cuttings. Bull. UASVM Hortic. 2011, 68, 380–385. [Google Scholar]
- Kashani, S.A.; Asrar, M.; Leghari, S.K.; Ali, I.; Agha, Q.; Ali, S.A. In vitro callus induction and shoot formation of Juniperus excelsa of Ziarat, Balochistan, Pakistan. Fuuast J. Biol. 2018, 8, 203–208. [Google Scholar]
- Gomez, M.P.; Segura, J. Factors controlling adventitious bud induction and plant regeneration in mature Juniperus oxycedrus leaves cultured in vitro. In Vitro Cell. Dev. Biol. Plant 1994, 30P, 210–218. [Google Scholar] [CrossRef]
- Harry, I.S.; Pulido, C.M.; Thorpe, T.A. Plantlet regeneration from mature embryos of Juniperus cedrus. Plant Cell Tiss. Organ Cult. 1995, 41, 75–78. [Google Scholar] [CrossRef]
- Negussie, A. In vitro induction of multiple buds in tissue culture of Juniperus excelsa. For. Ecol. Manag. 1997, 98, 115–123. [Google Scholar] [CrossRef]
- Al-Ramamneh, E.A.; Daradkeh, N.; Rababah, T.; Pacurar, D.; Al-Qudah, M. Effects of explant, media and growth regulators on in vitro regeneration and antioxidant activity of Juniperus phoenicea. Aust. J. Crop Sci. 2017, 11, 828–837. [Google Scholar] [CrossRef]
- Ortiz, P.L.; Arista, M.; Talavera, S. Low reproductive success in two subspecies of Juniperus oxycedrus L. Int. J. Plant Sci. 1998, 159, 843–847. [Google Scholar] [CrossRef]
- Baravardi, H.; Ranjbar, G.A.; Farah Abadi, S.K. Investigation of the effects of growth regulators on callus induction in Juniperus excelsa L. Bull. Environ. Pharmacol. Life Sci. 2014, 4, 73–77. [Google Scholar]
- Khater, N.; Benbouza, H. Preservation of Juniperus thulifera L.: A rare endangered species in Algeria through in vitro regeneration. J. For. Res. 2019, 30, 177–186. [Google Scholar] [CrossRef]
- Kocer, Z.A.; Gozen, A.G.; Onde, S.; Kaya, Z. Indirect organogenesis from bud explants of Juniperus communis L.: Effect of genotype, gender, sampling time and growth regulator combinations. Dendrobiology 2011, 66, 33–40. [Google Scholar]
- Garcia, D. Interaction between juniper Juniperus communis L. and its fruit insects: Pest abundance, fruit characteristics and seed viability. Acta Oecol. 1998, 19, 517–525. [Google Scholar] [CrossRef]
- Sriskanndarajah, S.; Goodwin, P.B.; Speirs, J. Genetic transformation of the apple scion cultivar delicious via Agrobacterium tumefaciens. Plant Cell Tiss. Organ Cult. 1994, 36, 317–329. [Google Scholar] [CrossRef]
- Hartman, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R. Plant Propagation: Principles and Practices; Prentice Hall International: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Berhe, D.; Negash, L. Asexual propagation of Juniperus procera from Ethiopia: A contribution to the conservation of African pencil cedar. For. Ecol. Manag. 1998, 112, 179–190. [Google Scholar] [CrossRef]
- Hazubska-Przybył, T.; Bojarczuk, K. Somatic embryogenesis of selected spruce species (Picea abies, P. omorika, P. pungens ‘Glauca’ and P. breweriana). Acta Soc. Bot. Pol. 2008, 77, 189–199. [Google Scholar] [CrossRef]
- Silva de Oliveira, L.; Brondani, G.E.; Batagin-Piotto, K.D.; Calsavara, R.; Goncalves, A.N.; de Almeida, M. Micropropagation of Eucalyptus cloeziana mature trees. Aust. For. 2015, 78, 219–231. [Google Scholar] [CrossRef]
- Mao, A.A.; Kaliamoorthy, S.; Ranyaphi, R.A.; Das, J.; Gupta, S.; Athili, J.; Yumnam, J.Y.; Chanu, L.I. In vitro micropropagation of three rare, endangered, and endemic rhododendron species of Northeast India. In Vitro Cell. Dev. Biol. Plant 2011, 47, 674–681. [Google Scholar] [CrossRef]
- Máchová, P.; Malá, J.; Cvrčková, H.; Dostál, J.; Buriánek, V. In vitro reproduction of rare and endemic species of rowan tree. J. For. Sci. 2013, 59, 386–390. [Google Scholar] [CrossRef]
- Kaviani, B.; Negahdar, N. Propagation, micropropagation and cryopreservation of Buxus hyrcana Pojark., an endangered ornamental shrub. S. Afr. J. Bot. 2017, 111, 326–335. [Google Scholar] [CrossRef]
- Zulkarnain, Z.; Tapingkae, T.; Taji, A. Applications of in vitro techniques in plant breeding. In Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 293–328. [Google Scholar]
- Hazubska-Przybył, T.; Bojarczuk, K. Tree somatic embryogenesis in science and forestry. Dendrobiology 2016, 76, 105–116. [Google Scholar] [CrossRef]
- Javeed, Q.N.; Perveen, R.; Imtiazul-Haq, I.; Ishi, I. Propagation of Juniperus polycarpos C. Koch through tissue culture I. Induction of callus. Pak. J. For. 1980, 30, 89–94. [Google Scholar]
- Gomez, M.P.; Segura, J. Axillary shoot proliferation in cultures of explants from mature Juniperus oxycedrus trees. Tree Physiol. 1995, 15, 625–628. [Google Scholar] [CrossRef]
- Morsli, A.; Tahar, S.; Lellouchi, M.; Titouh, K.; Amiali, M.; Benmazhar, H.; Benslimani, N.; Khelifi-Slaoui, M.; Khelifi, L. New advances in the regeneration of Algerian thuliferous juniper (Juniperus thurifera L.) trees. Wulfenia 2015, 22, 429–444. [Google Scholar]
- Wesche, K.; Ronnenberg, K.; Hensen, I. Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. J. Arid Environ. 2005, 63, 390–405. [Google Scholar] [CrossRef]
- Zade, M.M.; Kiadaliri, H.; Etemad, V.; Mehregan, I.; Azizinezhad, R. Seed viability changes during fruit ripening of Juniperus polycarpos: Implications for seed collection. Egypt. J. Bot. 2018, 58, 437–444. [Google Scholar]
- Daneshvar, A.; Tigabu, M.; Karimidoost, A.; Odén, P.C. Stimulation of germination in dormant seeds of Juniperus polycarpos by stratification and hormone treatments. New For. 2016, 47, 751–761. [Google Scholar] [CrossRef]
- Pinna, M.S.; Mattana, E.; Cañadas, E.M.; Bacchetta, G. Effects of pre-treatments and temperature on seed viability and germination of Juniperus macrocarpa Sm. C. R. Biol. 2014, 337, 338–344. [Google Scholar] [CrossRef]
- Zheronkiňa, T.A. Growing junipers from unripe seeds. Bull. Gl. Bot. Sada 1977, 78, 57–62. [Google Scholar]
- Tylkowski, T. Improving seed germination and seedling emergence in the Juniperus communis. Dendrobiology 2009, 61, 47–53. [Google Scholar]
- Yirdaw, E.; Leinonen, K. Seed germination responses of four afromontane tree species to red/far-red ratio and temperature. For. Ecol. Manag. 2002, 168, 53–61. [Google Scholar] [CrossRef]
- Tigabu, M.; Fjellström, J.; Odén, P.C.; Teketay, D. Germination of Juniperus procera seeds in response to stratification and smoke treatments, and detection of insect-damaged seeds with VIS + NIR spectroscopy. New For. 2007, 33, 155–169. [Google Scholar] [CrossRef]
- Tylkowski, T. Dormancy breaking in savin juniper (Juniperus sabina L.) seeds. Acta Soc. Bot. Pol. 2010, 79, 27–29. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tabacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gupta, P.K.; Durzan, D.J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 1985, 4, 177–179. [Google Scholar] [CrossRef]
- Shanjani, P.S. Nitrogen effect on callus induction and plant regeneration of Juniperus excelsa. Int. J. Agric. Biol. 2003, 5, 419–422. [Google Scholar]
- Belaineh, S. Somatic embryogenesis in Juniperus procera using Juniperus communis as a model. MEJS 2009, 1, 95–105. [Google Scholar] [CrossRef]
- Kuritskaya, E.V.; Vrzhosek, E.V.; Boltenkov, E.V. Effects of plant growth regulators on in vitro development of Juniperus chinensis var. sargentii and Microbiota decussata (Cupressaceae) shoots. Rastit. Resur. 2016, 52, 501–511. [Google Scholar]
- Kazemzadeh, H.B.; Momeni, M.; Ganji-Moghadam, E. Micropropagation of Juniper (Juniperus polycarpos): Optimizing surface sterilization pretreatments can play key role in suppression of contamination and browning of shoot tip explants. Azarian J. Agric. 2017, 4, 169–175. [Google Scholar]
- Gomez, M.P.; Segura, J. In vitro control of adventitious bud differentiation by inorganic media components in leaves of mature Juniperus oxycedrus. In Vitro Cell. Dev. Biol. Plant 1995, 31, 179–182. [Google Scholar] [CrossRef]
- Gomez, M.P.; Segura, J. Morphogenesis in leaf and single-cell cultures of mature Juniperus oxycedrus. Tree Physiol. 1996, 16, 681–686. [Google Scholar] [CrossRef]
- Harry, I.S.; Thorpe, T.A. In vitro culture of forest trees. In Plant Cell and Tissue Culture; Vasil, I.K., Thorpe, T.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 539–560. [Google Scholar]
- Schenk, R.U.; Hildebrandt, A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant tissue cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Kašparová, M.; Spilková, J.; Cvak, L.; Siatka, T.; Martin, J. Plant tissue cultures of Juniperus virginiana. Nat. Prod. Commun. 2016, 11, 681–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonga, J.M.; von Aderkas, P. In Vitro Culture of Trees; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; p. 236. [Google Scholar]
- Thorpe, T.A.; Harry, I.S.; Kumar, P.P. Application of micropropagation to forestry. In Micropropagation, Technology and Application; Deberg, P.C., Zimmerman, R.H., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; pp. 311–336. [Google Scholar]
- Rugini, E. In vitro propagation some olive (Olea europea L. var. sativa) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci. Hortic. 1984, 24, 123–134. [Google Scholar]
- McCown, B.H.; Lloyd, G. Woody plant medium (WPM)—A mineral nutrient formulation for microculture of woody plant-species. HortScience 1981, 16, 453. [Google Scholar]
- Driver, J.A.; Kuniyuki, A.H. In vitro propagation of paradox walnut rootstock. HortScience 1984, 19, 507–509. [Google Scholar]
- Bornman, C.H. Possibilities and constraints in the regeneration of trees from cotyledonary needles of Picea abies in vitro. Physiol. Plant. 1983, 57, 5–16. [Google Scholar] [CrossRef]
- Jang, J.C.; Tainter, F.H. Micropropagation of shortleaf, Virginia and loblolly x Shortleaf pine hybrids via organogenesis. Plant Cell Tiss. Organ Cult. 1991, 25, 61–67. [Google Scholar] [CrossRef]
- Quoirin, M.; LePoivre, P. Études de milieu adaptés aux cultures in vitro de Prunus. Acta Hortic. 1977, 78, 437–442. [Google Scholar] [CrossRef]
- Eriksson, T. Studies on the growth requirements and growth measurements of cell cultures of Haplopappus gracilis. Physiol. Plant. 1965, 18, 976–993. [Google Scholar] [CrossRef]
- Flinn, B.S.; Webb, D.T.; Georgis, W. In vitro control of caulogenesis by growth regulators and media components in embryonic explants of eastern white pine (Pinus strobus). Can. J. Bot. 1986, 64, 1948–1956. [Google Scholar] [CrossRef]
- Thorpe, T.A.; Bagh, K.; Cutler, A.J.; Dustan, D.I.; McIntyre, D.D.; Vogel, H.J. A 14N and 15N nuclear magnetic resonance study of nitrogen metabolism in shoot-forming cultures of white spruce (Picea glauca) buds. Plant Physiol. 1989, 91, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Ragonezi, C.; Klimaszewska, K.; Castro, M.R.; Lima, M.; de Oliveira, P.; Zavattieri, M.A. Adventitious rooting of conifers: Influence of physical and chemical factors. Trees 2010, 24, 975–992. [Google Scholar] [CrossRef] [Green Version]
- Klimaszewska, K.; Trontin, J.F.; Becwar, M.R.; Devillard, C.; Park, Y.S.; Lelu-Walter, M.A. Recent progress in somatic embryogenesis of four Pinus spp. Tree For. Sci. Biotech. 2007, 1, 11–25. [Google Scholar]
- Lelu-Walter, M.A.; Thompson, D.; Harvengt, L.; Sanchez, L.; Toribio, M.; Pâques, L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes 2013, 9, 883–889. [Google Scholar] [CrossRef]
- Bonga, J.M. Conifer clonal propagation in tree improvement programs. In Vegetative Propagation of Forest Trees; Park, Y.S., Bonga, J.M., Moon, H.K., Eds.; National Institute of Forest Science: Seoul, Korea, 2016; pp. 3–31. [Google Scholar]
- Von Arnold, S.; Egertsdotter, U.; Ekberg, I.; Gupta, P.; Mo, H.; Norgaard, J. Somatic embryogenesis in Norway spruce (Picea abies). In Somatic Embryogenesis in Woody Plants; Jain, M.S., Gupta, P.K., Newton, R.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Volume 3, pp. 17–36. [Google Scholar]
- Kim, Y.W. Initiation of embryogenic callus from mature zygotic embryos in Japanese larch (Larix kaempferi). J. Plant Biotechnol. 2015, 42, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Salaj, T.; Klubicová, K.; Matusova, R.; Salaj, J. Somatic embryogenesis in selected conifer trees Pinus nigra Arn. and Abies hybrids. Front. Plant Sci. 2019, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Von Arnold, S.; Clapham, D. Spruce embryogenesis. Methods Mol. Biol. 2008, 427, 31–47. [Google Scholar]
Species | Explant Type, Size and Origin | Culture Medium, PGRs and Activities | Culture Conditions | References |
---|---|---|---|---|
J. polycarpos | Juvenile shoot pieces | Javeed et al. 1980 (after Ilashi 1986) [35] | ||
J. polycarpos | Two studies: 1) Shoot cuttings (1–1.5 cm) from 2-year-old plants and 20-year-old mature trees 2) Mature zygotic embryos | 1) MS + 0.5 mg L−1 2,4-D + 2.0 mg L−1 KIN (CIM) MS + 0.5 mg L−1 2,4-D + 1.0 mg L−1 KIN. 4 w. (CPM) 2) ½ or full MS + 10% CW, 5–10% sucrose. 8 w. (CIM) | No information | Ilashi (1986) [12] |
J. oxycedrus | Leaves (0.5 cm) from shoots growing in vitro obtained from terminal shoots of 30-year-old wild trees | Modified SH + 0.11 mg L−1 BA, 3% sucrose, 0.7% agar, pH 5.8. 45 d. (SIM) Modified SH + 0.05% AC without BA, 4% sucrose. 45 d. (SEM) Modified SH + 0.47 mg L−1 NAA, 4% sucrose. 60 d. (RIM) | 26 ± 2 °C, 16-h PP, FTL 80 µmol m−2·s−1 | Gomez and Segura (1994) [16] |
J. oxycedrus | Shoot apices (2 mm) and nodal segments with 2–3 axillary buds from terminal shoots from 30-year-old trees | Modified SH without PGRs, 3% sucrose, 0.7% agar, pH 5.8. 60 d (SIM) Modified SH + 0.11 mg L−1 BA (SMM) Modified SH + 0–4.66 mg L−1 NAA, 0–4.38 mg L−1 IAA or 0–5.08 mg L−1 IBA or auxin combinations 30 d. Subculture to the same medium without PGRs. 30 d. (RIM) | 26 ± 2 °C, 16-h PP, FTL 80 µmol m−2·s−1 | Gomez and Segura (1995a) [36] |
J. oxycedrus | Leaves (0.5 cm) from shoots growing in vitro obtained from terminal shoots of 30-year-old wild trees | SH + 0.11 mg L−1 BA, 3% sucrose. 0.7% agar. pH 5.8. 45 d. (SIM) | 26 ± 2 °C, 16-h PP, FTL 80 µmol m−2·s−1 | Gomez and Segura (1995b) [53] |
J. oxycedrus | Two studies: 1) Leaves (0.5 cm) from shoots growing in vitro obtained from terminal shoots of 30-year-old wild trees 2) Calli derived from single cells from leaf-derived calli cultured in vitro | 1) Modified SH + 1.33 mg L−1 2,4-D. 45 d. (CIM) Modified SH + 0.01–1.33 mg L−1 2,4-D + 0.01–2.25 mg L−1 BA. 45 d. (SIM) Modified SH + 1.33 mg L−1 2,4-D or 2.41 mg L−1 picloram. 90 d. (EIM) 3% sucrose, 0.7% agar, pH 5.8. 2) Modified SH + 0.11 mg L−1 NAA + 1.12 mg L−1 BA + 100 mg L−1 CH. 60 d. (SIM) Modified SH + 0.01–0.11 mg L−1 NAA + 0.11–0.22 mg L−1 KIN or 0.22 mg L−1 Zea + 100 mg L−1 CH. 60 d. (EIM) | 26 ± 2 °C, 16-h PP, FTL 80 µmol m−2·s−1 | Gomez and Segura (1996) [54] |
J. cedrus | Mature zygotic seeds | ½ QP + 1.12 mg L−1 BA, 3% sucrose, 0.8% agar. 15 d. (SIM) Subculture to the same media without BA. 2 m. (SDM) ½ QP or ½ SH + 0.05% AC, 2% sucrose. 6–7 m. (SEM) | 24 ± 1 °C, 16-h PP, 60–80 µmol m−2·s−1 | Harry et al. (1995) [17] |
J. excelsa (synonym J. procera) | Two studies: 1) Cotyledons from 5–9-day-old germinating seedlings 2) Zygotic embryos (4–9 mm) | 1) Eriksson + 0.5 mg L−1 BA + 0.02 mg L−1 NAA. 6w. (SIM) 2) MS + 1.0 mg L−1 BA + 0.02 mg L−1 NAA. 12 w. (SIM) 3% sucrose, 0.7% agar, pH 5.6. | 25/18 °C (day/night), 16-h PP, 85 µE m−2·s−1, RH 86%–92% | Negussie (1997) [18] |
J. chinensis | Leaves of young trees | SH + 3.0 mg L−1 NAA + 0.2 mg L−1 KIN. 20 d. (CIM). SH + 3.0 mg L−1 NAA + 0.2 mg L−1 KIN. 39 d. (CMM) 3% sucrose, 1% agar, pH 5.8. | 25°C, darkness | Muranaka et al. (1998) [13] |
J. excelsa | Shoots with apical or lateral buds and needles from 8-year-old plants | Modified MS (½ NH4NO3 + ½ KNO3) + Glutamine 100 mg L−1 + 0.1 mg L−1 BAP + 0.5 mg L−1 2,4-D (CIM) Modified MS (without NH4NO3) (SIM) | 25 °C, light, 16-h PP | Shanjani (2003) [40] |
J. phoenicea | Microcuttings with axillary buds (1 cm) from cuttings from terminal branches of 20-year-old trees | DKW + 0.20 mg L−1 KIN or 0.10 mg L−1 BA or OM + 0.51 mg L−1 NAA + 0.40 mg L−1 KIN (SIM) DKW + 0.51 mg L−1 NAA + 0.40 mg L−1 KIN or OM + 0.10 mg L−1 BA or 0.51 mg L−1 NAA + 0.40 mg L−1 KIN (SEM) OM + 0.49 mg L−1 IBA (5 min) (RIM) | 22 ± 1 °C, 16-h PP, 98 µmol m−2·s−1 | Loureiro et al. (2007) [2] |
J. procera | Immature dominant and non-dominant zygotic embryos | ½ LP + 1.99 mg L−1 2,4-D + 0.10 mg L−1 BA, 0.4% gellan gum, pH 5.8 (EIM) ½ LP suspension culture (CMM) ½ LP + 16–256 mg L−1 ABA + 7.5% PEG 4000, pH 5.8. (EMM) | 22 ± 2 °C, darkness | Belaineh (2009) [50] |
J. communis | Megagametophytes with zygotic embryos in the phase of cleavage polyembryony | ½ LP without PGR 4 w. (EIM) 16 medium without PGR. 3 m. (EPM) Medium 923 with decreased content of N and Ca without ABA. 3 w. Then, + 15.86 mg L−1ABA (EMM) Mature embryos partially desiccated. 3–4 w. Transfer to ¼ DCR 4 w. (RIM) | Darkness, 22 °C (embryogenic cell line induction); 120 µmol m−2·s−1, 22 ± 1 °C (somatic embryo maturation) | Helmersson and von Arnold (2009) [5] |
J. communis | Spring buds from shoots of female and male trees | MS + 0.1 mg L−1 BA + 4.0 mg L−1 IBA or 1 mg L−1 2,4-D, 3% sucrose, 0.7% agar, pH 5.7. 2 m. (CIM) MS + 2 mg L−1 BA + 1 mg L−1 2,4-D. 1 m. (SIM) MS + 2.0 mg L−1 BA. 1 m. (SEM) | 25 ± 2 °C, 16-h PP, 330 µmol m−2·s−1 | Kocer et al. (2011) [23] |
J. navicularis | Shoot tips and nodal segments of young shoots originating from mature male and female plants | GD + 0.20 mg L−1 BA + 0.51 mg L−1 NAA, 2% sucrose, 0.8% agar, pH 5.8. 1 m. (SIM) GD + 0.10 mg L−1 BA. 1 m. (SMM) OM + 2.5 mg L−1 IBA without l-glutamine. 6 w. (RIM) | 16-h PP, 24/19 °C day/night, 90 µmol m−2·s−1 | Castro et al. (2011) [4] |
J. excelsa | Young shoot tips from trees | WPM + 0.5 mg L−1 BA + 0.5 mg L−1 2,4-D + 5% sucrose, pH 5.7. 12 w. (CIM) WPM + 0.5 mg L−1 BA + 5% sucrose, pH 5.7. 16 w. (SDM, SEM) WPM + 0.1 mg L−1 IBA + 5% sucrose, pH 5.7. 4–6 w. (RIM) | 25 ± 2 °C, WIT, 16-h PP | Zaidi et al. (2012) [3] |
J. horizontalis | Young shoot tips from trees | WPM + 0.5 mg L−1 BA + 0.5 mg L−1 2,4-D + 5% sucrose, pH 5.7. 12 w. (CIM) WPM + 0.5 mg L−1 BA + 5% sucrose, pH 5.7. 16 w. (SDM, SEM) WPM + 0.1 mg L−1 IBA + 5% sucrose, pH 5.7. 4–6 w. (RIM) | 25 ± 2 °C, WIT, 16-h PP | Zaidi et al. (2012) [3] |
J. chinensis | Young shoot tips from trees | WPM + 0.5 mg L−1 BA + 0.5 mg L−1 2,4-D + 5% sucrose, pH 5.7. 12 w. (CIM) WPM + 0.5 mg L−1 BA + 5% sucrose, pH 5.7. 16 w. (SDM, SEM) WPM + 0.1 mg L−1 IBA + 5% sucrose, pH 5.7. 4–6 w. (RIM) | 25 ± 2 °C, WIT, 16-h PP | Zaidi et al. (2012) [3] |
J. phoenicea | Microcuttings from 3-year-old seedlings | OM + 0.5 mg L−1 TDZ. 3 w. (SIM, SDM) OM + 0.5 mg L−1 TDZ. 2 m. (SEM) | 25 ± 2 °C, 16-h PP, 40 W, FTL | Al-Ramamneh et al. (2012) [7] |
J. excelsa | Lateral bud cuttings from 8-year-old plants | MS + 3.0 mg L−1 2,4-D + 0.2 mg L−1 KIN. 3% sucrose, 0.7% agar, pH 5.7–5.8. 30 d. (CIM) | 25 ± 2 °C, darkness | Baravardi et al. (2014) [21] |
J. virginiana | Fresh leaves from mature trees | SH + 3.0 mg L−1 NAA + 0.2 mg L−1 KIN. 4 w. (CIM) SH + 3.0 mg L−1 NAA + 0.2 mg L−1 KIN + 15 mg L−1 AA. 25 d. (CPM) | 25 ± 2 °C, 16-h PP, FTL 3500 lux | Kašparová et al. (2016) [57] |
J. phoenicea | Microcuttings (0.5 and 1.5 cm) from branches of 3-year-old seedlings | OM + 0.1 mg L−1 TIBA. 1 m, 2 m, 3 m. (SIM, SEM, RIM) | No information | Al-Ramamneh et al. (2017) [19] |
J. polycarpos | Shoot tips with 1–3 lateral buds from about 7-year-old trees | OM + 0–10 mg L−1 KIN or BA, 5% sucrose, pH 5.8. (SIM) OM + 5 mg L−1 KIN or BA, 5% sucrose, pH 5.8. (SEM) | 25 °C, 16-h PP, WFT, 5000 lux | Momeni et al. (2018) [9] |
J. excelsa | Young shoot tips (1–1.5 cm) | WPM + 0.5 mg L−1 BAP + 0.5 mg L−1 2,4-D. 9 w. (CIM, SIM) WPM + 0.1 mg L−1 IBA. 6 w. (RIM) | No information | Kashani et al. (2018) [15] |
J. thulifera | Shoots with at least one axillary bud from 8–10-year-old trees (1.0–1.5 cm) | WPM + 0.5 mg L−1 BAP + 1 mg L−1 2,4-D, vitamins, 3% sucrose, 0.7% agar, 0.25 g L−1 AC. 30–45 d. (CIM) WPM + 0.5 mg L−1 BAP + 0.25 mg L−1 2,4-D. 4 w. (SDM) WPM + 0.5 mg L−1 BAP + 0.25 or 1 mg L−1 2,4-D (SEM) ½ MS + 5 mg L−1 IBA + 5 mg L−1 NAA, 1.0 g L−1 AC. 5–7 w. (RIM) | 25 ± 2 °C, darkness (callus induction); 22 ± 2 °C, 16-h PP, 1500 lx ’white nothingness’ (shoot multiplication); 22 °C, darkness, 16-h PP (shoot rooting) | Khater and Benbouza (2018) [22] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazubska-Przybył, T. Propagation of Juniper Species by Plant Tissue Culture: A Mini-Review. Forests 2019, 10, 1028. https://doi.org/10.3390/f10111028
Hazubska-Przybył T. Propagation of Juniper Species by Plant Tissue Culture: A Mini-Review. Forests. 2019; 10(11):1028. https://doi.org/10.3390/f10111028
Chicago/Turabian StyleHazubska-Przybył, Teresa. 2019. "Propagation of Juniper Species by Plant Tissue Culture: A Mini-Review" Forests 10, no. 11: 1028. https://doi.org/10.3390/f10111028
APA StyleHazubska-Przybył, T. (2019). Propagation of Juniper Species by Plant Tissue Culture: A Mini-Review. Forests, 10(11), 1028. https://doi.org/10.3390/f10111028