Influence of Root Distribution on Preferential Flow in Deciduous and Coniferous Forest Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tracer Experiment
2.3. Root Abundance (RA) Investigating
2.4. Soil Sample Collection for Solute Concentration
2.5. Flow Classification and Dye Pattern Analysis
2.6. Root-Solute Interaction (RSI)
3. Results
3.1. Observed Preferential Flow Paths
3.2. Spatial Variation of Preferential Flow Paths
3.3. Root Abundance (RA) in Vertical Soil Profile
3.4. Variation of Root-Solute Interaction (RSI) in Forest Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mei, X.; Zhu, Q.; Ma, L.; Zhang, D.; Wang, Y.; Hao, W. Effect of stand origin and slope position on infiltration pattern and preferential flow on a Loess hillslope. Land Degrad. Dev. 2018, 29, 1353–1365. [Google Scholar] [CrossRef]
- Köhne, J.M.; Köhne, S.; Šimůnek, J. A review of model applications for structured soils: a) Water flow and tracer transport. J. Contam. Hydrol. 2009, 104, 4–35. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors, and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Julich, D.; Julich, S.; Feger, K.H. Phosphorus in preferential flow pathways of forest soils in Germany. Forests 2017, 8, 19. [Google Scholar] [CrossRef]
- Julich, S.; Benning, R.; Julich, D.; Feger, K. Quantification of phosphorus exports from a small forested headwater-catchment in the Eastern Ore Mountains, Germany. Forests 2017, 8, 206. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P.E. Macropores and water flow in soils revisited. Water Resour. Res. 2013, 6, 3071–3092. [Google Scholar] [CrossRef]
- Sheng, F.; Wang, K.; Zhang, R.; Liu, H. Modeling preferential water flow and solute transport in unsaturated soil using the active region model. Environ. Earth Sci. 2011, 62, 1491–1501. [Google Scholar] [CrossRef]
- Clothier, B.; Green, S.R.; Deurer, M. Preferential flow and transport in soil: Progress and prognosis. Eur. J. Soil Sci. 2008, 59, 2–13. [Google Scholar] [CrossRef]
- Darnault, C.J.G.; Steenhuis, T.S.; Garnier, P.; Kim, Y.J.; Jenkins, M.; Ghiorse, W.C.; Baveye, P.; Parlange, J.Y. Preferential Flow and Transport of Cryptosporidium parvum Oocysts through the Vadose Zone: Experiments and Modeling. Vadose Zone J. 2004, 3, 262–270. [Google Scholar] [CrossRef]
- Stamm, C.; Flühler, H.; Gächter, R.; Leuenberger, J.; Wunderli, H. Preferential Transport of Phosphorus in Drained Grassland Soils. J. Environ. Qual. 1998, 27, 515–522. [Google Scholar] [CrossRef]
- Jiang, X.J.; Liu, W.J.; Chen, C.F.; Liu, J.Q.; Yuan, Z.Q.; Jin, B.C.; Yu, X.Y. Effects of three morphometric features of roots on soil water flow behavior in three sites in China. Geoderma 2018, 320, 161–171. [Google Scholar] [CrossRef]
- Bogner, C.; Gaul, D.; Kolb, A.; Schmiedinger, I.; Huwe, B. Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics. Eur. J. Soil Sci. 2010, 61, 1079–1090. [Google Scholar] [CrossRef]
- Gerke, H.H. Preferential flow descriptions for structured soils. J. Plant Nutr. Soil Sci. 2006, 169, 382–400. [Google Scholar] [CrossRef]
- Hendrickx, J.M.; Flury, M. Uniform and preferential flow mechanisms in the vadose zone. In Conceptual Models of Flow and Transport in the Fractured Vadose Zone; National Research Council, Ed.; National Academy Press: Washington, DC, USA, 2001; pp. 149–187. [Google Scholar]
- Zehe, E.; Flühle, H. Preferential transport of isoproturon at a plot scale and a field scale tile-drained site. J. Hydrol. 2001, 247, 100–115. [Google Scholar] [CrossRef]
- Schwen, A.; Backus, J.; Yang, Y.; Wendroth, O. Characterizing land use impact on multi-tracer displacement and soil structure. J. Hydrol. 2014, 519, 1752–1768. [Google Scholar] [CrossRef]
- Newman, B.D.; Wilcox, B.P.; Graham, R.C. Snowmelt-driven macropore flow and soil saturation in a semiarid forest. Hydrol. Proc. 2004, 18, 1035–1042. [Google Scholar] [CrossRef]
- Noguchi, S.; Tsuboyama, Y.; Sidle, R.C.; Hosoda, L. Spatially distributed morphological characteristics of macropores in forest soils of Hitachi Ohta experimental watershed. Jpn. J. For. Res. 1997, 2, 207–215. [Google Scholar] [CrossRef]
- Dusek, J.; Vogel, T.; Lichner, L.; Čipáková, A.; Dohnal, M. Simulated cadmium transport in macroporous soil during heavy rainstorm using dual-permeability approach. Biologia 2006, 61, S251–S254. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, P.R.; Hoffmann, M.; Kistrup, J.P.; Bryde, C.; Bossi, R.; Villholth, K.G. Preferential flow and pesticide transport in a clay-rich till: Field, laboratory, and modeling analysis. Water Resour. Res. 2002, 38, 1246–1261. [Google Scholar] [CrossRef]
- Ghestem, M.; Sidle, R.C.; Stokes, A. The influence of plant root systems on subsurface flow: Implications for slope stability. Bioscience 2011, 61, 869–879. [Google Scholar] [CrossRef]
- Vannoppen, W.; Vanmaercke, M.; De Baets, S.; Poesen, J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth Sci. Rev. 2015, 150, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Stone, L.F. Physical, Chemical, and Biological Changes in the Rhizosphere and Nutrient Availability. J. Plant Nutr. 2006, 29, 1327–1356. [Google Scholar] [CrossRef]
- Singh, Y.P.; Nayak, A.K.; Sharma, D.K.; Singh, G.; Mishra, V.K.; Singh, D. Evaluation of Jatropha curcas genotypes for rehabilitation of degraded. Land Degrad. Dev. 2015, 26, 510–520. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Niu, J.Z.; Yu, X.X.; Zhu, W.L.; Du, X.Q. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems. For. Syst. 2015, 24, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Niu, J.; Zhang, M.; Xiao, Z.; Zhu, W. Interaction Between Plant Roots and Soil Water Flow in Response to Preferential Flow Paths in Northern China. Land Degrad. Dev. 2016, 28, 648–663. [Google Scholar] [CrossRef]
- Blevins, R.L.; Holowaychuk, N.; Wilding, L.P. Micromorphology of soil fabric at tree root-soil interface. Soil Sci. Soc. Am. J. 1970, 34, 460–465. [Google Scholar] [CrossRef]
- Guo, L.; Gregory, J.M.; Sean, H.; Henry, L.; Delphis, L. Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stemflow along coarse roots. Geoderma 2020, 357, 113953. [Google Scholar] [CrossRef]
- Uchida, T.; Kosugi, K.; Mizuyama, T. Effects of pipeflow on hydrological process and its relation to landslide: A review of pipeflow studies in forested headwater catchments. Hydrol. Process. 2001, 15, 2151–2174. [Google Scholar] [CrossRef]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Legout, A.; Legout, C.; Nys, C.; Dambrine, E. Preferential flow and slow convective chloride transport through the soil of a forested landscape (Fougères, France). Geoderma 2009, 151, 179–190. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P.F. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Backnäs, S.; Laine-Kaulio, H.; Kløve, B. Phosphorus forms and related soil chemistry in preferential flow paths and the soil matrix of a forested podzolic till soil profile. Geoderma 2012, 189, 50–64. [Google Scholar] [CrossRef]
- Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Llstedt, U. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resour. Res. 2014, 50, 3342–3354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccon, C.; Panzacchi, P.; Scandellari, F.; Prandi, L.; Ventura, M.; Russo, B.; Millard, P.; Tagliavini, M. Spatial and temporal effects of soil temperature and moisture and the relation to fine root density on root and soil respiration in a mature apple orchard. Plant Soil 2011, 342, 195–206. [Google Scholar] [CrossRef]
- Laine-Kaulio, H.; Backnäs, S.; Koivusalo, H.; Laurén, A. Dye tracer visualization of flow patterns and pathways in glacial sandy till at a boreal forest hillslope. Geoderma 2015, 259, 23–34. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551, 357–366. [Google Scholar] [CrossRef]
- Liu, M.; Guo, L.; Yi, J.; Lin, H.; Luo, S.; Zhang, H.; Li, T. Characterising preferential flow and its interaction with the soil matrix using dye tracing in the Three Gorges Reservoir Area of China. Soil Res. 2018, 56, 588–600. [Google Scholar] [CrossRef]
- Jia, G.; Liu, Z.; Chen, L.; Yu, X. Distinguish water utilization strategies of trees growing on earth-rocky mountainous area with transpiration and water isotopes. Ecol. Evol. 2017, 7, 10640–10651. [Google Scholar] [CrossRef]
- Bauhus, J.; Messier, C. Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can. J. For. Res. 1999, 29, 260–273. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Jia, G. Water uptake by coniferous and broad-leaved forest in a rocky mountainous area of northern China. Agric. For. Meteorol. 2019, 265, 381–389. [Google Scholar] [CrossRef]
- Jia, J.B.; Yu, X.X.; Li, Y.T. Response of forestland soil water content to heavy rainfall on Beijing Mountain, northern China. J. For. Res. 2016, 27, 541–550. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, W. Characteristics of preferential flow during simulated rainfall events in an arid region of China. Environ. Earth Sci. 2016, 75, 566. [Google Scholar] [CrossRef]
- Luo, Z.; Niu, J.; Zhang, L.; Chen, X.; Zhang, W.; Xie, B.; Du, J.; Zhu, Z.; Wu, S.; Li, X. Roots-Enhanced Preferential Flows in Deciduous and Coniferous Forest Soils Revealed by Dual-Tracer Experiments. J. Environ. Qual. 2019, 48, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, R. Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine. J. Hydrol. 2011, 397, 105–117. [Google Scholar] [CrossRef]
- Janssen, M.; Lennartz, B. Characterization of preferential flow pathways through paddy bunds with dye tracer tests. Soil Sci. Soc. Am. J. 2008, 72, 1756–1766. [Google Scholar] [CrossRef]
- Sheng, F.; Liu, H.; Wang, K.; Zhang, R.; Tang, Z. Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model. J. Hydrol. 2014, 508, 137–146. [Google Scholar] [CrossRef]
- Flury, M.; Wai, N.N. Dyes as tracers for vadose zone hydrology. Rev. Geophys. 2003, 41, 1002. [Google Scholar] [CrossRef]
- Li, X.; Niu, J.; Zhang, L.; Xiao, Q.; McPherson, G.E.; van Doorn, N.; Meng, C. A study on crown interception with four dominant tree species: A direct measurement. Hydrol. Res. 2016, 47, 857–868. [Google Scholar] [CrossRef]
- Bachmair, S.; Weiler, M.; Nützmann, G. Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone. J. Hydrol. 2009, 369, 241–252. [Google Scholar] [CrossRef]
- Finér, L.; Ohashi, M.; Noguchi, K.; Hirano, Y. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For. Ecol. Manag. 2011, 262, 2008–2023. [Google Scholar] [CrossRef]
- Kurz, W.A.; Beukema, S.J.; Apps, M.J. Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Can. J. For. Res. 1996, 26, 1973–1979. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Akinnifesi, F.K.; Tossah, B.K.; Lyasse, O.; Sanginga, N.; Merckx, R. Root distribution of Senna siamea grown on a series of derived-savanna-zone soils in Togo, West Africa. Agrofor. Syst. 2002, 54, 1–12. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Brouwer, G.; Meijboom, F.; do Rosario, M.; Oliveira, G.; Bengough, A.G. Trench Profile Techniques and Core Break Methods. In Root Methods: A Handbook; Smit, A.L., Bengough, A.G., Engels, C., Noordwijk, M., Pellerin, S., Geijn, S.C., Eds.; Springer: Berlin, Germany, 2000; pp. 211–223. [Google Scholar]
- Koch, S.; Kahle, P.; Lennartz, B. Visualization of Colloid Transport Pathways in Mineral Soils Using Titanium(IV) Oxide as a Tracer. J. Environ. Qual. 2016, 45, 2053–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobles, M.M.; Wilding, L.P.; Lin, H.S. Flow pathways of bromide and Brilliant Blue FCF tracers in caliche soils. J. Hydrol. 2010, 393, 114–122. [Google Scholar] [CrossRef]
- Weiler, M.; Flühler, H. Inferring flow types from dye patterns in macroporous soils. Geoderma 2004, 120, 137–153. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, X.; Wang, E.; Li, X.; Sun, R.; Shi, W. Effects of tillage pan on soil water distribution in alfalfa-corn crop rotation systems using a dye tracer and geostatistical methods. Soil Tillage Res. 2015, 150, 68–77. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, K.; Pei, Z.; Lu, M. Pollution assessment and spatial variation of soil heavy metals in Lixia River Region of Eastern China. J. Soils Sediments 2016, 16, 748–755. [Google Scholar] [CrossRef]
- Fu, W.; Tunney, H.; Zhang, C. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Tillage Res. 2010, 106, 185–193. [Google Scholar] [CrossRef]
- Liu, H.; Lennartz, B. Visualization of Flow Pathways in Degraded Peat Soils Using Titanium Dioxide. Soil Sci. Soc. Am. J. 2015, 79, 757–765. [Google Scholar] [CrossRef]
- Daigle, A.; St-Hilaire, A.; Peters, D.; Baird, D. Multivariate Modelling of Water Temperature in the Okanagan Watershed. Can. Water Resour. J. 2010, 35, 237–258. [Google Scholar] [CrossRef] [Green Version]
- Casado, M.R.; Parsons, D.J.; Magan, N.; Weightman, R.M.; Battilani, P.; Poetri, A. A short geostatistical study of the three-dimensional spatial structure of fumonisins in maize. World Mycotoxin J. 2010, 3, 95–103. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Wu, G.; Huang, Z.; Cui, Z.; Cheng, Z.; Zhang, R.; Tian, F.; He, H. Preferential water flow: Influence of alfalfa (Medicago sativa L.) decayed root channels on soil water infiltration. J. Hydrol. 2019, 578, 124019. [Google Scholar] [CrossRef]
- Devitt, D.A.; Smith, S.D. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. J. Arid Environ. 2002, 50, 99–108. [Google Scholar] [CrossRef]
- Ferchaud, F.; Vitte, G.; Bornet, F.; Strullu, L.; Mary, B. Soil water uptake and root distribution of different perennial and annual bioenergy crops. Plant Soil 2015, 388, 307–322. [Google Scholar] [CrossRef]
- DuPont, S.T.; Beniston, J.; Glover, J.D.; Hodson, A.; Culman, S.W.; Lal, R.; Ferris, H. Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant Soil 2014, 381, 405–420. [Google Scholar] [CrossRef]
- Tracy, S.R.; Black, C.R.; Roberts, J.A.; Mooney, S.J. Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.). Environ. Exp. Bot. 2013, 91, 38–47. [Google Scholar] [CrossRef]
- Bengough, A.G. Water Dynamics of the Root Zone: Rhizosphere Biophysics and Its Control on Soil Hydrology. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef]
- Alaoui, A.; Caduff, U.; Gerke, H.H.; Weingartner, R. A preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone J. 2011, 10, 367–377. [Google Scholar] [CrossRef]
- Meng, C.; Niu, J.; Li, X.; Luo, Z.; Du, X.; Du, J.; Lin, X.; Yu, X. Quantifying soil macropore networks in different forest communities using industrial computed tomography in a mountainous area of North China. J. Soils Sediments 2018, 17, 2357–2370. [Google Scholar] [CrossRef]
- Morales, V.L.; Parlange, J.Y.; Steenhuis, T.S. Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review. J. Hydrol. 2010, 393, 29–36. [Google Scholar] [CrossRef]
- Allaire, S.E.; Roulier, S.; Cessna, A.J. Quantifying preferential flow in soils: A review of different techniques. J. Hydrol. 2009, 378, 179–204. [Google Scholar] [CrossRef]
- Crow, P.; Houston, T.J. The influence of soil and coppice cycle on rooting habit of short rotation poplar and willow coppice. Biomass Bioenergy 2004, 26, 497–505. [Google Scholar] [CrossRef]
- Rytter, R.M.; Hansson, A.C. Seasonal amount, growth and depth distribution of fine roots in an irrigated and fetilized Salix viminalis L. Biomass Bioenergy 1996, 11, 129–137. [Google Scholar] [CrossRef]
- Sidle, R.C.; Noguchi, S.; Tsuboyama, Y.; Laursen, K. A conceptual model of preferential flow systems in forested hillslopes: Evidence of self-organization. Hydrol. Process. 2001, 15, 1675–1692. [Google Scholar] [CrossRef]
- DeRoo, H.C. Tillage and root growth. In Root Growth; Whittington, W.J., Ed.; Butterworths: London, UK, 1968; pp. 339–358. [Google Scholar]
- Jassogne, L.; McNeill, A.; Chittleborough, D. 3D-visualization and analysis of macro- and meso-porosity of the upper horizons of a sodic, texture-contrast soil. Eur. J. Soil Sci. 2007, 58, 589–598. [Google Scholar] [CrossRef]
- Jost, G.; Schume, H.; Hager, H.; Markart, G.; Kohl, B. A hillslope scale comparison of tree species influence on soil moisture dynamics and runoff processes during intense rainfall. J. Hydrol. 2012, 420, 112–124. [Google Scholar] [CrossRef]
- Bodner, G.; Leitner, D.; Kaul, H.P. Coarse and fine root plants affect pore size distributions differently. Plant Soil 2014, 380, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K. The interdisciplinary nature of SOIL. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Lipsius, K.; Mooney, S.J. Using image analysis of tracer staining to examine the infiltration patterns in a water repellent contaminated sandy soil. Geoderma 2006, 136, 865–875. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Yang, Z.; Cui, Z.; Deng, L.; Chang, X.; Shi, Z. Root channels to indicate the increase in soil matrix water infiltration capacity of arid reclaimed mine soils. J. Hydrol. 2017, 546, 133–139. [Google Scholar] [CrossRef]
- Sierra, C.A.; Del Valle, J.I.; Orrego, S.A. Accounting for fine root mass sample losses in the washing process: A case study from a tropical Montane Forest of Colombia. J. Trop. Ecol. 2003, 19, 599–601. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Doolittle, J. Soil layering and preferential flow impacts on seasonal changes of GPR signals in two contrasting soils. Geoderma 2014, 213, 560–569. [Google Scholar] [CrossRef]
- Poisson, J.; Chouteau, M.; Aubertin, M.; Campos, D. Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. J. Appl. Geophys. 2009, 67, 179–192. [Google Scholar] [CrossRef]
Forest Type | Dominant Tree Species | Geographic Position | Altitude (m) | Aspect | Soil Layer (cm) | ISWC (%) | BD (g/cm3) | SOC (%) |
---|---|---|---|---|---|---|---|---|
DF | Quercus variabilis Bl. | 40°3′41″ N 115°5′29″ E | 275 | East 32.5° to south | 0–10 | 10.7 | 1.32 ± 0.06 | 4.1 |
10–20 | 8.3 | 1.38 ± 0.15 | 1.8 | |||||
20–30 | 8.2 | 1.42 ± 0.04 | 2.0 | |||||
30–40 | 10.8 | 1.37 ± 0.08 | 0.8 | |||||
CF | Platycladus orientalis (L.) Franco | 40°3′42″ N 115°5′373″ E | 255 | East 19.5° to south | 0–10 | 12.7 | 1.21 ± 0.13 | 5.8 |
10–20 | 14.1 | 1.24 ± 0.13 | 3.7 | |||||
20–30 | 12.5 | 1.23 ± 0.10 | 2.2 | |||||
30–40 | 12.6 | 1.18 ± 0.13 | 2.7 |
Flow Type | Dye Coverage (DC) of Stained Pathway Width for | |
---|---|---|
<20 mm | >200 mm | |
Macropore flow with low interaction | >50% | <20% |
Macropore flow with mixed interaction | 20–50% | <20% |
Macropore flow with high interaction | <20% | <30% |
Heterogeneous matrix flow and fingering | <20% | 30–60% |
Homogeneous matrix flow | <20% | >60% |
Plane | Model | A (m) | C0 | (C0 + C) | C0/(C0 + C) (%) | Spatial Class | R2 | RSS |
---|---|---|---|---|---|---|---|---|
DF-H | E | 0.27 | 0.0012 | 0.007 | 17.4 | S | 0.971 | 3.61 × 10−7 |
DF-Z | G | 0.38 | 0.0010 | 1.246 | 0.08 | S | 0.942 | 1.18 × 10−1 |
CF-H | E | 0.72 | 0.1360 | 1.286 | 10.6 | S | 0.960 | 2.85 × 10−2 |
CF-Z | G | 0.42 | 0.0001 | 0.153 | 0.07 | S | 0.971 | 8.44 × 10−4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Niu, J.; Xie, B.; Zhang, L.; Chen, X.; Berndtsson, R.; Du, J.; Ao, J.; Yang, L.; Zhu, S. Influence of Root Distribution on Preferential Flow in Deciduous and Coniferous Forest Soils. Forests 2019, 10, 986. https://doi.org/10.3390/f10110986
Luo Z, Niu J, Xie B, Zhang L, Chen X, Berndtsson R, Du J, Ao J, Yang L, Zhu S. Influence of Root Distribution on Preferential Flow in Deciduous and Coniferous Forest Soils. Forests. 2019; 10(11):986. https://doi.org/10.3390/f10110986
Chicago/Turabian StyleLuo, Ziteng, Jianzhi Niu, Baoyuan Xie, Linus Zhang, Xiongwen Chen, Ronny Berndtsson, Jie Du, Jiakun Ao, Lan Yang, and Siyu Zhu. 2019. "Influence of Root Distribution on Preferential Flow in Deciduous and Coniferous Forest Soils" Forests 10, no. 11: 986. https://doi.org/10.3390/f10110986