Changes in Plant Functional Groups during Secondary Succession in a Tropical Montane Rain Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Measurement of Ecophysiological Traits
2.3. Data Analysis
3. Results
3.1. Plant Functional Groups of the TMRF
3.2. Analysis of Species Richness and Occurrence Frequency of PFGs
3.3. PFGs Richness and Functional Composition in Different Successional Stages
3.4. Relative Abundance of PFGs along the Successional Stages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hawkins, C.P.; MacMahon, J.A. Guilds: The multiple meanings of a concept. Annu. Rev. Entomol. 1989, 34, 423–451. [Google Scholar] [CrossRef]
- Gitay, H.; Noble, I.R.; Connell, J.H. Deriving functional types for rain-forest trees. J. Veg. Sci. 1999, 10, 641–650. [Google Scholar] [CrossRef]
- Pos, E.; Guevara Andino, J.E.; Sabatier, D.; Molino, J.F.; Pitman, N.; Mogollón, H.; Neill, D.; Cerón, C.; Rivas-Torres, G.; Di, F.A.J.E.; et al. Estimating and interpreting migration of Amazonian forests using spatially implicit and semi-explicit neutral models. Ecol. Evol. 2017, 7, 4254–4265. [Google Scholar] [CrossRef] [PubMed]
- García-Palacios, P.; Maestre, F.T.; Gallardo, A. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups. J. Ecol. 2011, 99, 551–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavorel, S.; Díaz, S.; Cornelissen, J.H.C.; Garnier, E.; Harrison, S.P.; Mcintyre, S.; Pausas, J.G.; Pérezharguindeguy, N.; Roumet, C.; Urcelay, C. Plant Functional Types: Are We Getting Any Closer to the Holy Grail? Terr. Ecosyst. Chang. World 2007, 17, 149–164. [Google Scholar]
- Muler, A.L.; Canham, C.A.; Etten, E.J.B.V.; Stock, W.D.; Froend, R.H.J.F.E. Using a functional ecology approach to assist plant selection for restoration of Mediterranean woodlands. For. Ecol. Manag. 2018, 424, 1–10. [Google Scholar] [CrossRef]
- Hubbell, S.P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 2005, 19, 166–172. [Google Scholar] [CrossRef]
- McLaren, J.R.; Turkington, R. Ecosystem properties determined by plant functional group identity. J. Ecol. 2010, 98, 459–469. [Google Scholar] [CrossRef]
- Kooyman, R.; Rossetto, M. Definition of plant functional groups for informing implementation scenarios in resource-limited multi-species recovery planning. Biodivers. Conserv. 2008, 17, 2917–2937. [Google Scholar] [CrossRef]
- Körner, C. CO2 Fertilization: The Great Uncertainty in Future Vegetation Development. In Vegetation Dynamics Global Change; Solomon, A., Shugart, H., Eds.; Springer: New York, NY, USA, 1993; pp. 53–70. [Google Scholar] [CrossRef]
- Díaz, S.; Noy-Meir, I.; Cabido, M. Can grazing response of herbaceous plants be predicted from simple vegetative traits? J. Appl. Ecol. 2010, 38, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Barradas, M.C.D.; Zunzunegui, M.; Tirado, R.; Ain-Lhout, F.; Novo, F.G. Plant functional types and ecosystem function in Mediterranean shrubland. J. Veg. Sci. 2010, 10, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zang, R. Relationship between species richness of plant functional groups and landscape patterns in a tropical forest of Hainan Island, China. J. Trop. For. Sci. 2011, 23, 289–298. [Google Scholar]
- Li, N.; He, N.; Yu, G.; Wang, Q.; Jian, S. Leaf non-structural carbohydrates regulated by plant functional groups and climate: Evidences from a tropical to cold-temperate forest transect. Ecol. Indic. 2016, 62, 22–31. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Finegan, B.; Capers, R.S.; Salgado-Negret, B.; Casanoves, F.; Boukili, V.; Norden, N. Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica 2010, 42, 31–40. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Scheu, S. Invasibility of experimental grassland communities: The role of earthworms, plant functional group identity and seed size. Oikos 2008, 117, 1026–1036. [Google Scholar] [CrossRef]
- Spasojevic, M.J.; Harline, K.; Stein, C.; Mangan, S.A.; Myers, J.A. Landscape context mediates the relationship between plant functional traits and decomposition. Plant Soil 2019, 438, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Katabuchi, M.; Kurokawa, H.; Davies, S.J.; Tan, S.; Nakashizuka, T. Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. J. Ecol. 2012, 100, 643–651. [Google Scholar] [CrossRef]
- Hong, H.N.; Uria-Diez, J.; Wiegand, K. Spatial distribution and association patterns in a tropical evergreen broad-leaved forest of north-central Vietnam: Official organ of the International Association for Vegetation Science. J. Veg. Sci. 2016, 27, 318–327. [Google Scholar]
- Brym, Z.T.; Lake, J.K.; Allen, D.; Ostling, A. Plant functional traits suggest novel ecological strategy for an invasive shrub in an understorey woody plant community. J. Appl. Ecol. 2011, 48, 1098–1106. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Buschena, C.; Tjoelker, M.G.; Wrage, K.; Knops, J.; Tilman, D.; Machado, J.L. Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: A test of functional group differences. New Phytol. 2003, 157, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Lucía, S.V.; Juan, D.; José, A.; Casandra, R.-G.; Horacio, P.; Paula, J. Functional Diversity of Small and Large Trees along Secondary Succession in a Tropical Dry Forest. Forests 2016, 7, 163. [Google Scholar]
- Storkey, J.; Brooks, D.; Haughton, A.; Hawes, C.; Smith, B.M.; Holland, J.M.; Lavorel, S. Using functional traits to quantify the value of plant communities to invertebrate ecosystem service providers in arable landscapes. J. Ecol. 2013, 101, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Sanaphre-Villanueva, L.; Dupuy, J.M.; Andrade, J.L.; Reyes-García, C.; Jackson, P.C.; Paz, H. Patterns of plant functional variation and specialization along secondary succession and topography in a tropical dry forest. Environ. Res. Lett. 2017, 12, 055004. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Cerabolini, B.; Castro-Díez, P.; Villar-Salvador, P.; Montserrat-Martí, G.; Puyravaud, J.P.; Maestro, M.; Werger, M.J.A.; Aerts, R. Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 2003, 14, 311–322. [Google Scholar] [CrossRef]
- Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 1998, 199, 213–227. [Google Scholar] [CrossRef]
- Domingues, T.F.; Martinelli, L.A.; Ehleringer, J.R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecol. 2007, 193, 101–112. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 1997, 8, 463–474. [Google Scholar] [CrossRef]
- Meers, T.L.; Bell, T.L.; Enright, N.J.; Kasel, S. Role of plant functional traits in determining vegetation composition of abandoned grazing land in north-eastern Victoria, Australia. J. Veg. Sci. 2008, 19, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Mechelen, C.V.; Dutoit, T.; Kattge, J.; Hermy, M.J.E.E. Plant trait analysis delivers an extensive list of potential green roof species for Mediterranean France. Ecol. Eng. 2014, 67, 48–59. [Google Scholar] [CrossRef]
- Lima, T.A.; Vieira, G. High plant species richness in monospecific tree plantations in the Central Amazon. For. Ecol. Manag. 2013, 295, 77–86. [Google Scholar] [CrossRef]
- Letcher, S.G.; Lasky, J.R.; Chazdon, R.L.; Norden, N.; Wright, S.J.; Meave, J.A.; Pérez-García, E.A.; Muñoz, R.; Romero-Pérez, E.; Andrade, A.; et al. Environmental gradients and the evolution of successional habitat specialization: A test case with 14 Neotropical forest sites. J. Ecol. 2015, 103, 1276–1290. [Google Scholar] [CrossRef]
- Zeng, Q.B.; Li, Y.D.; Chen, B.F.; Wu., Z.M.; Zhou, G.Y. Research and Management of Tropical Ecosystem; China Forestry Press: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Jiang, Y.X.; Lu, J.P. Tropical Forest Ecosystem in Jianfengling, Hainan Island, China; Science Press: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Alvarez-Anorve, M.Y.; Quesada, M.; Sanchez-Azofeifa, G.A.; Avila-Cabadilla, L.D.; Gamon, J.A. Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. Am. J. Bot. 2012, 99, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. cluster: Cluster Analysis Basics and Extensions. R Package Version 2012, 1, 56. [Google Scholar]
- Jari Oksanen, F.; Blanchet, G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package. R Package Version 2.5-5. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 September 2019).
- Mclaren, J.R.; Novoplansky, A.; Turkington, R.J.P.E. Few effects of plant functional group identity on ecosystem properties in an annual desert community. Plant. Ecol. 2016, 217, 1–15. [Google Scholar] [CrossRef]
- Holl, K.D.; Zahawi, R.A.; Cole, R.J.; Ostertag, R.; Cordell, S. Planting Seedlings in Tree Islands Versus Plantations as a Large-Scale Tropical Forest Restoration Strategy. Restor. Ecol. 2011, 19, 470–479. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci.USA 1997, 94, 13730–13734. [Google Scholar] [CrossRef] [Green Version]
- Craine, J.; Tilman, D.; Wedin, D.; Reich, P.; Tjoelker, M.; Knops, J. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct. Ecol. 2002, 16, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.; Falster, D.; Moles, A.; Vesk, P.; Wright, I. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.E.; Brooks, J.R. Functional groups based on leaf physiology: Are they spatially and temporally robust? Oecologia 2005, 144, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Hérault, B.; Bachelot, B.; Poorter, L.; Rossi, V.; Bongers, F.; Chave, J.; Paine, C.E.T.; Wagner, F.; Baraloto, C. Functional traits shape ontogenetic growth trajectories of rain forest tree species. J. Ecol. 2011, 99, 1431–1440. [Google Scholar] [CrossRef]
- Risser, P.G. Biodiversity and ecosystem function. Conserv. Biol. 1995, 9, 742–746. [Google Scholar] [CrossRef]
- López-Martínez, J.; Sanaphre-Villanueva, L.; Dupuy, J.; Hernandez-Stefanoni, J.L.; Meave, J.; Gallardo, A. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan. PLoS ONE 2013, 8, e73660. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F. Physiological controls over plant establishment in primary succession. In Primary Succession on Land; Miles, J., Walton, D.W.H., Eds.; Blackwell Scientific Publications: Oxford, UK, 1993; pp. 161–178. [Google Scholar]
- Pickett, S.; Collins, S.; Armesto, J. A hierarchical consideration of causes and mechanisms of succession. Vegetatio 1987, 69, 109–114. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Pérez-García, E.A.; Meave, J.A.; Poorter, L.; Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 2011, 27, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-D.; Zang, R.-G.; Convertino, M. Predicting the distribution of potential natural vegetation based on species functional groups in fragmented and species-rich forests. Plant Ecol. Evol. 2013, 146, 261–271. [Google Scholar] [CrossRef]
*Note: Sp1 | Blastus cochinchinensis, Lour. | Sp30 | Syzygium hancei Merr. et Perry | Sp59 | Antidesma montanum Bl. |
Sp2 | Lithocarpus longipedicellatus (Hick. et A. Camus) A. Camus | Sp31 | Phoebe hungmaoensis S. Lee | Sp60 | Evodia glabrifolia (Champ. ex Benth.) Huang |
Sp3 | Elaeocarpus petiolatus (Jack) Wall. ex Kurz | Sp32 | Illicium ternstroemioides | Sp61 | Helicia formosana |
Sp4 | Acronychia pedunculata (L.) Miq. | Sp33 | Litsea elongata (Wall. ex Nees) Benth. et Hook. f. | Sp62 | Eriobotrya deflexa (Hemsl.) Nakai f. koshunensis (Kanehira et Sasaki) Li |
Sp5 | Ormosia balansae Drake | Sp34 | Lasianthus koi Merr. et Chun | Sp63 | Sapium discolor (Champ. ex Benth.) Muell. Arg. |
Sp6 | Chassalia curviflora Thwaites var. longifolia | Sp35 | Endospermum chinense Benth. | Sp64 | Ampelocalamus actinotrichus (Merr. et Chun) S. L. Chen. T. H. Wen et G. Y. Sheng |
Sp7 | Neolitsea oblongifolia Merr. et Chun | Sp36 | Symplocos paniculata (Thunb.) Miq. | Sp65 | Calamus simplicifolius C. F. Wei |
Sp8 | Mallotus hookerianus (Seem.) Muell. Arg. | Sp37 | Dasymaschalon rostratum | Sp66 | Rhaphiolepis indica (L.) Lindl. ex Ker |
Sp9 | Lasianthus chinensis (Champ.) Benth. | Sp38 | Lasianthus hirsutus (Roxb.) Merr. | Sp67 | Olax wightiana Wall. ex Wight et Arn. |
Sp10 | Gironniera subaequalis Planch. | Sp39 | Sterculia lanceolata Cav. | Sp68 | Pygeum topengii Merr. |
Sp11 | Mastixia pentandra Blume subsp. cambodiana (Pierre) Matthew | Sp40 | Symplocos lancifolia Sieb. et Zucc. | Sp69 | Miscanthus floridulus (Lab.) Warb. ex Schum. et Laut. |
Sp12 | Winchia calophylla A. DC. | Sp41 | Psychotria rubra (Lour.) Poir. | Sp70 | Trema angustifolia (Planch.) Bl. |
Sp13 | Lithocarpus brachystachyus Chun | Sp42 | Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils | Sp71 | Neolitsea phanerophlebia Merr. |
Sp14 | Parapyrenaria multisepala (Merr. et Chun) Chang | Sp43 | Cyclobalanopsis blakei (Skan) Schott. | Sp72 | Dillenia pentagyna Roxb. |
Sp15 | Ardisia nervosa Walker | Sp44 | Ormosia semicastrata Hance f. litchifolia How | Sp73 | Castanopsis chinensis Hance |
Sp16 | Polyosma cambodiana Gagnep. | Sp45 | Reevesia pubescens Mast. | Sp74 | Artocarpus styracifolius Pierre |
Sp17 | Eupatorium odoratum L. | Sp46 | Pithecellobium lucidum Benth. | Sp75 | Glochidion coccineum (Buch.-Ham.) Muell. Arg. |
SP18 | Elaeocarpus dubius A. DC. | Sp47 | Heliciopsis lobata (Merr.) Sleum. | Sp76 | Pinanga discolor Burret |
Sp19 | Diplospora dubia (Lindl.) Masam. | Sp48 | Eurya groffii Merr. | Sp77 | Melastoma candidum D. Don |
Sp20 | Ervatamia hainanensis Tsiang | Sp49 | Machilus salicina Hance | Sp78 | Olea dioica Roxb. |
Sp21 | Lasianthus curtisii King et Gamble | Sp50 | Ardisia quinquegona Bl. | Sp79 | Cinnamomum burmanni (Nees et T.Nees) Blume |
Sp22 | Lindera kwangtungensis (Liou) Allen | Sp51 | Melastoma sanguineum Sims | Sp80 | Symplocos pseudobarberina Gontsch. |
Sp23 | Lithocarpus fenestratus (Roxb.) Rehd. | Sp52 | Ilex pubilimba Merr. et Chun | Sp81 | Alseodaphne hainanensis Merr. |
Sp24 | Lindera robusta (Allen) H. P. Tsui | Sp53 | Beilschmiedia laevis Allen | Sp82 | Canthium dicoccum (Gaertn.) Teysmann et Binnedijk |
Sp25 | Helicia hainanensis | Sp54 | Syzygium jambos (L.) Alston | Sp83 | Castanopsis tonkinensis Seem. |
Sp26 | Nephelium topengii (Merr.) H. S. Lo | Sp55 | Cryptocarya chingii Cheng | Sp84 | Linociera ramiflora (Roxb.) Wall. ex G. Don |
Sp27 | Adinandra hainanensis Hayata | Sp56 | Pentaphylax euryoides Gardn. et Champ. | Sp85 | Cryptocarya chinensis (Hance) Hemsl. |
Sp28 | Drypetes indica (Muell. Arg.) Pax et Hoffm | Sp57 | Evodia lepta | Sp86 | Ardisia crenata Sims |
Sp29 | Lithocarpus fenzelianus A.Camus | Sp58 | Prismatomeris tetrandra (Roxb.) K. Schum. | Sp87 | Thysanolaena maxima (Roxb.) Kuntze) |
Successional Stage | Time Years Since Harvest | No. of Plots | Plot Size (m2) |
---|---|---|---|
I Primary | 5 | 3 | 10 × 10 |
II Early | 15 | 30 | 10 × 10 |
III Middle | 40 | 12 | 10 × 10 |
IV Late | Old growth | 25 | 20 × 20 |
PFGs | Growth Form | Characteristic of Functional Traits | Representative Species |
---|---|---|---|
PFG1(1) | Perennial herbs | High Amax (>10), High gmax (>10), Low WUE (<10), High Trmmol (>5), High SLA (>20). | Eupatorium odoratum L. |
PFG2(1) | Trees | High Amax (>10), Middle gmax (1–10), low WUE (<10), High Trmmol (>5), High SLA (>20). | Evodia glabrifolia (Champ. ex Benth.) Huang |
PFG3(5) | Shrubs and herbs | High Amax (>10), Middle gmax (1–10), Middle WUE (10–20), High Trmmol (>5), Middle SLA (10–20). | Sapium discolor (Champ. ex Benth.) Muell. Arg. Thysanolaena maxima |
PFG4(4) | Evergreen Trees and shrubs | Middle Amax (5–10), Low gmax (<1), Middle WUE (10–20), Middle Trmmol (2–5), Middle SLA (10–20). | Elaeocarpus petiolatus (Jack) Wall. ex Kurz Adinandra hainanensis |
PFG5(28) | Shrubs, Trees and Liana | Low Amax (<5), Low gmax (<1), High WUE (>20), Low Trmmol (<2), Middle SLA (10–20). | Cryptocarya chinensis (Hance) Hemsl. Diplospora dubia (Lindl.) Masam. |
PFG6(5) | Evergreen Trees and Shrubs | Low Amax (<5), Low gmax (<1), Low WUE (<10), Low Trmmol (<2), Middle SLA (10–20). | Lithocarpus brachystachyus Chun Cyclobalanopsis blakei (Skan) Schott. |
PFG7(34) | Shrubs or small trees | Low Amax (<5), Low gmax (<1), High WUE (>20), Low Trmmol (<2), Middle SLA (10–20). | Dillenia pentagyna Roxb. Nephelium topengii (Merr.) H. S. Lo |
PFG8(9) | Shrubs or saplings | Low Amax (<5), Low gmax (<1), High WUE (>20), Low Trmmol (<2), High SLA (>20). | Blastus cochinchinensis Lour. Ervatamia hainanensis Tsiang |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, K.; Tao, J.; Zang, L.; Yao, J.; Huang, J.; Lu, X.; Ding, Y.; Xu, Y.; Zang, R. Changes in Plant Functional Groups during Secondary Succession in a Tropical Montane Rain Forest. Forests 2019, 10, 1134. https://doi.org/10.3390/f10121134
Fan K, Tao J, Zang L, Yao J, Huang J, Lu X, Ding Y, Xu Y, Zang R. Changes in Plant Functional Groups during Secondary Succession in a Tropical Montane Rain Forest. Forests. 2019; 10(12):1134. https://doi.org/10.3390/f10121134
Chicago/Turabian StyleFan, Kexin, Jing Tao, Lipeng Zang, Jie Yao, Jihong Huang, Xinghui Lu, Yi Ding, Yue Xu, and Runguo Zang. 2019. "Changes in Plant Functional Groups during Secondary Succession in a Tropical Montane Rain Forest" Forests 10, no. 12: 1134. https://doi.org/10.3390/f10121134
APA StyleFan, K., Tao, J., Zang, L., Yao, J., Huang, J., Lu, X., Ding, Y., Xu, Y., & Zang, R. (2019). Changes in Plant Functional Groups during Secondary Succession in a Tropical Montane Rain Forest. Forests, 10(12), 1134. https://doi.org/10.3390/f10121134