Spatial Analysis of Temperate Forest Structure: A Geostatistical Approach to Natural Forest Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest Data
2.3. Geospatial Data
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Randolph, J.C.; Green, G.M.; Belmont, J.; Burcsu, T.; Welch, D. Forest Ecosystems and the Human Dimension. In Seeing the Forest and the Trees: Human–Environment Interactions in Forest Ecosystems; Moran, E.F., Ostrom, E., Eds.; MIT Press: Cambridge, MA, USA, 2005; pp. 81–103. [Google Scholar]
- Bolton, D.K.; Coops, N.C.; Hermosillo, T.; Wulder, M.A.; White, J.C. Assessing variability in postfire forest structure along gradients of productivity in the Canadian boreal using multisource remote sensing. J. Biogeogr. 2017, 44, 1294–1305. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Sáenz, R.C.; Rehfeldt, G.E.; Crookston, N.L.; Duval, P.; Amant, R.S.T.; Beaulieu, J.B.; Richardson, A. Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim. Chang. 2010, 102, 595–623. [Google Scholar] [CrossRef]
- Groombridge, B.; Jenkins, M.D. Global Biodiversity: Earth’s Living Resources in the 21st Century; World Conservation Press: Cambridge, MA, USA, 2000. [Google Scholar]
- González, E.M.; Meave, J.A.; Marcial, N.R.; Aceves, T.T.; Hernández, F.G.; Manríquez, G.I. Los bosques de niebla de México: conservación y restauración de su componente arbóreo. Rev. Ecosistemas 2012, 21, 1–2. [Google Scholar]
- Challenger, A. La zona ecológica templada húmeda. In Utilización y Conservación de Los Ecosistemas Terrestres de México: Pasado, Presente y Futuro; CONABIO-Instituto de Biología, UNAM Sierra Madre: Mexico City, México, 1998; pp. 433–518. [Google Scholar]
- Velázquez, A.; Mas, J.F.; Gallegos, J.R.D.; Saucedo, R.M.; Alcántara, P.C.; Castro, R.; Palacio, J.L. Patrones y tasas de cambio de uso del suelo en México. Gaceta Ecológica 2002, 62. Available online: https://www.redalyc.org/articulo.oa?id=53906202 (accessed on 18 January 2019).
- Aguilar, S.V.; Castillo, M.A.; Guerrero, V.F.; Wehenkel, C.; Pinedo, A.C. Modeling the potential distribution of Picea chihuahuana Martínez, an endangered species at the Sierra Madre Occidental, Mexico. Forest 2015, 6, 692–707. [Google Scholar] [CrossRef]
- Jupp, D.L.; Walker, J. Detecting structural and growth changes in woodlands and forests: The challenge for remote sensing and the role of geometric-optical modelling. In The Use of Remote Sensing in the Modeling of Forest Productivity; Springer: Dordrecht, Netherlands, 1997; pp. 75–108. [Google Scholar]
- Ludwig, B.; Khanna, P.K.; Raison, R.J.; Jacobsen, K. Modelling changes in cation composition of a soil after clearfelling a eucalypt forest in East Gippsland, Australia. Geoderma 1997, 80, 95–116. [Google Scholar] [CrossRef]
- Achard, F.; Mollicone, D.; Stibig, H.J.; Aksenov, D.; Laestadius, L.; Li, Z.; Potapov, P.; Yaroshenko, A. Areas of rapid forest-cover change in boreal Eurasia. For. Ecol. Manag. 2006, 237, 322–334. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: forcing, feedbacks, and the climate benefits of forests. Science. 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Asner, G.P.; Morton, D.C.; Anderson, L.O.; Saatchi, S.S.; Espírito-Santo, F.D.; Souza, C. Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends Ecol. Evol. 2007, 22, 414–423. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Franklin, S.E. Remote sensing for sustainable forest management; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Wang, X.; Shao, G.; Chen, H.; Lewis, B.J.; Qi, G.; Yu, D.; Dai, L. An Application of remote sensing data in mapping landscape-level forest biomass for monitoring the effectiveness of forest policies in Northeastern China. Environ. Manag. 2013, 52, 612–620. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ. 2012, 122, 146–165. [Google Scholar] [CrossRef]
- Ingram, J.C.; Dawson, T.P.; Whittaker, R.J. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sens. Environ. 2005, 94, 491–507. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Wolter, P.T.; Townsend, P.A.; Sturtevant, B.R. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data. Remote Sens. Environ. 2009, 113, 2019–2036. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Hall, R.J.; Coburn, C.A.; Hall, F.G. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens. Environ. 2010, 114, 1325–1337. [Google Scholar] [CrossRef]
- Bach, K.; Schawe, M.; Beck, S.; Gerold, G.; Gradstein, S.R.; Moraes, R. Vegetación, suelos y clima en los diferentes pisos altitudinales de un bosque montano de Yungas, Bolivia: Primeros resultados. Ecología en Bolivia 2003, 38, 3–14. [Google Scholar]
- Sanderson, M.; Santini, M.; Valentini, R.; Pope, E. Relationships between forests and weather. EC Directorate General of the Environment; Met Office: Devon, UK, 2012. Available online: http://ec.europa.eu/environment/forests/pdf/EU_Forests_annex1.pdf (accessed on 19 October 2018).
- Vázquez-Quintero, G.; Solís-Moreno, R.; Pompa-García, M.; Villarreal-Guerrero, F.; Pinedo-Alvarez, C.; Pinedo-Alvarez, A. Detection and projection of forest changes by using the Markov Chain Model and Cellular Automata. Sustainability 2016, 8, 236. [Google Scholar] [CrossRef]
- Pasher, J.; King, D.J. Multivariate forest structure modelling and mapping using high resolution airborne imagery and topographic information. Remote Sens. Environ. 2010, 114, 1718–1732. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Rakib, M.A.; Dampare, S.B.; Ganyaglo, S.; Suzuki, S. Surface water quality assessment in the central part of Bangladesh using multivariate analysis. Ksce J. Civ. Eng. 2011, 15, 995–1003. [Google Scholar] [CrossRef]
- Batayneh, A.; Zumlot, T. Multivariate statistical approach to geochemical methods in water quality factor identification; application to the shallow aquifer system of the Yarmouk basin of north Jordan. Res. J. Environ. Earth Sci. 2012, 4, 756–768. [Google Scholar]
- Oketola, A.A.; Adekolurejo, S.M.; Osibanjo, O. Water quality assessment of River Ogun using multivariate statistical techniques. J. Environ. Prot. Ecol. 2013, 4, 466. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Kalabokidis, K.D.; Koutsias, N.; Konstantinidis, P.; Vasilakos, C. Multivariate analysis of landscape wildfire dynamics in a Mediterranean ecosystem of Greece. Area 2007, 39, 392–402. [Google Scholar] [CrossRef]
- Verdú, F.; Salas, J.; García, C.V. A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005. Int J. Wildland Fire 2012, 21, 498–509. [Google Scholar] [CrossRef]
- Tritsch, I.; Sist, P.; Narvaes, I.D.S.; Mazzei, L.; Blanc, L.; Bourgoin, C.; Gond, V. Multiple patterns of forest disturbance and logging shape forest landscapes in Paragominas, Brazil. Forests 2016, 7, 315. [Google Scholar] [CrossRef]
- Torres, A.B.; Acuña, L.; Vergara, J.M. Integrating CBM into land-use based mitigation actions implemented by local communities. Forests 2014, 5, 3295–3326. [Google Scholar] [CrossRef]
- Felger, R.S.; Johnson, M.B. Trees of the northern Sierra Madre Occidental and sky islands of southwestern North America. In Biodiversity and Management of the Madrean archipelago: The Sky Islands of Southwestern United States and Northwestern Mexico; US Forest Service General Technical Report: RM-GTR-264: Tucson, AZ, USA, 1995; pp. 71–83. [Google Scholar]
- CONABIO. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. In La biodiversidad en Chihuahua: Estudio de Estado, 1st ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: México D.F., Méx, 2014; p. 22. [Google Scholar]
- Torres, R. 2013. Cuenca río Turuachi con atención a áreas críticas de deforestación y degradación forestal. Propuesta de Proyecto enviada por Ejido Chinatú como parte de la Convocatoria a proyectos de campo a través de Alianzas para la preparación a REDD+ del proyecto México de Reducción de Emisiones por Deforestación y Degradación Forestal (MREDD+); Alianza México REDD+: Mexico City, Mexico, 2012. [Google Scholar]
- INEGI. Síntesis de información geográfica del Estado de Chihuahua, 1st ed.; Instituto Nacional de Estadística, Geografía e Informática: Aguascalientes, Méx, 2003; p. 113.
- Hall, R.J.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. Forest. Ecol. Manag. 2006, 225, 378–390. [Google Scholar] [CrossRef]
- Miranda, A.L.; Garza, E.J.; Pérez, J.J.; Calderón, O.A.; Tagle, M.A.; García, P.M.; Salado, A.C. Modeling susceptibility to deforestation of remaining ecosystems in North Central Mexico with logistic regression. J. For. Res. 2012, 23, 345–354. [Google Scholar] [CrossRef]
- Pérez, V.A.; Mas, J.F.; Zielinska, A.L. Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environ. Modell. Softw. 2012, 29, 11–23. [Google Scholar] [CrossRef]
- Bax, V.; Francesconi, W.; Quintero, M. Spatial modeling of deforestation processes in the Central Peruvian Amazon. J. Nat. Conserv. 2016, 29, 79–88. [Google Scholar] [CrossRef]
- INEGI, Instituto Nacional de Estadística, Geografía e Informática. Sistema de Descarga del Continuo de Elevaciones Mexicano. 2005. Available online: http://mapserver.inegi.gob.mx (accessed on 19 July 2018).
- Maidment, D.R.; Djokic, D. Hydrologic and Hydraulic Modelling Support: with Geographic Information Systems; ESRI Inc.: Redlands, CA, USA, 2000; pp. 65–84. [Google Scholar]
- Hamdy, O.; Zhao, S.; Salheen, M.A.; Eid, Y.Y. Identifying the risk areas and urban growth by ArcGIS tools. Geosciences 2016, 6, 47. [Google Scholar] [CrossRef]
- SAS software, Version 9.1.3; SAS Institute Inc.: Cary, NC, USA, 2006.
- Eder, B.K.; Davis, J.M.; Bloomfield, P. An automated classification scheme designed to better elucidate the dependence of ozone on meteorology. J. Appl. Meteorol. 1994, 33, 1182–1199. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1988. [Google Scholar]
- Li, A.; Wang, A.; Liang, S.; Zhou, W. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS—A case study in the upper reaches of Minjiang River, China. Ecol. Model. 2006, 192, 175–187. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Wu, F.Q.; Wang, L.; Yuan, L.; Zhao, L.S. Application of PCA integrated with CA and GIS in eco-economic regionalization of Chinese Loess Plateau. Ecol. Econ. 2011, 70, 1051–1056. [Google Scholar] [CrossRef]
- Yidana, S.M.; Banoeng-Yakubo, B.; Akabzaa, T.M. Analysis of groundwater quality using multivariate an spatial analyses in the Keta basin, Ghana. J. Afr. Earth Sci. 2010, 58, 220–234. [Google Scholar] [CrossRef]
- Castillo, R.; Blanco, J.L.; Salinas, E.M. A geomorphologic GIS-multivariate analysis approach to delineate environmental units, a case study of La Malinche volcano (central México). Appl. Geogr. 2010, 30, 629–638. [Google Scholar] [CrossRef]
- Rzedowski, J. Diversidad y orígenes de la flora fanerogámica de México. In Diversidad biológica de México: orígenes y distribución; Ramamoorthy, T.P., Bye, R., Lot, A., Fa, J., Eds.; UNAM: Instituto de Biología, México, 1998; pp. 129–145. [Google Scholar]
- Hlásny, T.; Trombik, J.; Bošeľa, M.; Merganič, J.; Marušák, R.; Šebeň, V.; Štěpánek, P.; Kubišta, J.; Trnka, M. Climatic drivers of forest productivity in Central Europe. Agr. For. Meteorol. 2017, 234, 258–273. [Google Scholar] [CrossRef]
- Helman, D.; Osem, Y.; Yakir, D.; Lensky, I.M. Relationships between climate, topography, water use and productivity in two key Mediterranean forest types with different water-use strategies. Agr. Forest Meteorol. 2017, 232, 319–330. [Google Scholar] [CrossRef]
- Kumar, P.; Sajjad, H.; Mahanta, K.K.; Ahmed, R.; Mandal, V.P. Assessing suitability of allometric models for predicting stem volume of Anogeissus pendula Edgew in sariska Tiger Reserve, India. Remote Sens. Appl. Soc. Environ. 2018, 10, 47–55. [Google Scholar] [CrossRef]
- Kirby, K.R.; Laurance, W.F.; Albernaz, A.K.; Schroth, G.; Fearnside, P.M.; Bergen, S.; Venticinque, E.M.; Costa, C.D. The future of deforestation in the Brazilian Amazon. Futures. 2006, 38, 432–453. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, C.I.; De la Cruz, M.; Jara-Guerrero, A.; Gusmán, E.; Escudero, A. The effects of individual tree species on species diversity in a tropical dry forest change throughout ontogeny. Ecography 2016, 39, 329–337. [Google Scholar] [CrossRef]
- Barber, C.P.; Cochrane, M.A.; Souza, C.M., Jr.; Laurance, W.F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 2014, 177, 203–209. [Google Scholar] [CrossRef]
- Mancino, G.; Nolè, A.; Ripullone, F.; Ferrara, A. Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. IFOREST 2014, 7, 75. [Google Scholar] [CrossRef]
- Johnson, D. Métodos multivariados aplicados al análisis de datos, 1st ed.; International Thompson Editors: México D.F., México, 1998; p. 566. [Google Scholar]
- De La Cueva, A.V. Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis. Int. J. Remote Sens. 2008, 29, 5657–5676. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Riitters, K.H.; Coulston, J.W. Hotspots of perforated forest in the Eastern United States. Enviro. Manag. 2005, 35, 483–492. [Google Scholar] [CrossRef]
- Wang, H.F.; Qureshi, S.; Qureshi, B.A.; Qiu, J.X.; Friedman, C.R.; Breuste, J.; Wang, X.K. A multivariate analysis integrating ecological, socioeconomic and physical characteristics to investigate urban forest cover and plant diversity in Beijing, China. Ecol. Indic. 2016, 60, 921–929. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Gao, P.; Guo, D. Regionalization of forest pattern metrics for the continental United States using contiguity constrained clustering and partitioning. Ecol. Inform. 2012, 9, 11–18. [Google Scholar] [CrossRef]
- Trakhtenbrot, A.; Kadmon, R. Environmental cluster analysis as a tool for selecting complementary networks of conservation sites. Ecol. Appl. 2005, 15, 335–345. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Setturu, B.; Chandran, S. Geospatial analysis of forest fragmentation in Uttara Kannada District, India. For. Ecosyst. 2016, 3, 10. [Google Scholar]
Variable | Unit | Source | Acronym |
---|---|---|---|
Average total volume per tree | m3 | Sampling | ATVT |
Number of trees per hectare | No | Sampling | NTPH |
Basal area per hectare | m2 | Sampling | BAPH |
Total volume of trees per hectare | m3 | Sampling | TVTPH |
Average quadratic diameter | Cm | Sampling | AQD |
Spectral band 3 | W/(m2 sr µm) | USGS | SB3 |
Spectral band 7 | W/(m2 sr µm) | USGS | SB7 |
Normalized difference vegetation index | Adimensional | Own source | NDVI |
Modified soil-adjusted vegetation index 2 | Adimensional | Own source | MSAVI2 |
Distance to roads | m | Own source | DR |
Distance to water bodies | m | Own source | DWB |
Slope | Degrees | INEGI | Slope |
Mean annual temperature | °C | CONAGUA | MAT |
ATVT | NTPH | BAPH | TVTPH | DQ | SB3 | SB7 | NDVI | MSAVI2 | DR | DWB | Slope | MAT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ATVT | 1.00 | ||||||||||||
NTPH | −0.41 ** | 1.00 | |||||||||||
BAPH | 0.10 | 0.72 ** | 1.00 | ||||||||||
TVTPH | 0.24 ** | 0.70 ** | 0.89 * | 1.00 | |||||||||
DQ | 0.92 ** | −0.47 ** | 0.11 * | 0.18 * | 1.00 | ||||||||
SB3 | 0.05 | −0.06 | 0.29 * | −0.05 | 0.03 | 1.00 | |||||||
SB7 | −0.17 * | −0.07 | −0.17 * | −0.18 * | −0.15 * | 0.35 ** | 1.00 | ||||||
NDVI | 0.18 * | −0.05 | 0.11 * | 0.12 * | 0.23 ** | −0.15 * | −0.40 ** | 1.00 | |||||
MSAVI2 | 0.01 | −0.10 | −0.05 | −0.06 | 0.07 | 0.21 * | 0.58 ** | 0.45 ** | 1.00 | ||||
DR | 0.03 | −0.01 | 0.03 | −0.01 | 0.08 | 0.11 * | 0.21 ** | 0.02 | 0.22 ** | 1.00 | |||
DWB | 0.19 * | −0.16 * | −0.04 * | −0.04 | 0.24 * | −0.05 | −0.09 | 0.00 | −0.13 * | −0.02 | 1.00 | ||
Slope | 0.14 * | −0.07 | −0.01 | 0.01 | 0.10 | −0.06 | −0.27 ** | −0.13 * | −0.41 ** | −0.24 ** | 0.22 ** | 1.00 | |
ANT | 0.19 * | −0.11 * | −0.08 | −0.04 | 0.09 | 0.03 | -0.10 | −0.31 ** | −0.37 ** | −0.30 ** | 0.47 ** | 0.61 ** | 1.00 |
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
ATVT | 0.3520 | 0.0774 | 0.4682 | 0.1101 |
NTPH | −0.3087 | 0.4643 | −0.2010 | 0.0330 |
BAPH | −0.1517 | 0.5470 | 0.1315 | 0.2141 |
TVTPH | −0.0915 | 0.5614 | 0.1527 | 0.0964 |
AQD | 0.3326 | 0.0453 | 0.5076 | 0.0861 |
SB3 | −0.1082 | −0.0420 | 0.1070 | 0.5630 |
SB7 | −0.2637 | −0.2888 | 0.0276 | 0.5045 |
NDVI | −0.0359 | 0.0715 | 0.3801 | −0.4627 |
MSAVI2 | −0.2956 | −0.2097 | 0.3703 | 0.0775 |
DR | −0.1854 | −0.0899 | 0.2187 | 0.1282 |
DWB | 0.3217 | 0.0119 | 0.0093 | 0.1521 |
Slope | 0.3911 | 0.1258 | −0.2137 | 0.0936 |
MAT | 0.4219 | 0.0606 | −0.2338 | 0.2905 |
Contrasts | Value | F-Value | DF | Pr > F |
---|---|---|---|---|
All | 0.1026 | 53.84 | 26 | <0001 |
1 vs 2 y 3 | 0.1389 | 157.31 | 13 | <0001 |
2 vs 1 y 3 | 0.8128 | 5.85 | 13 | <0001 |
3 vs 1 y 2 | 0.1579 | 135.37 | 13 | <0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto-Amparán, J.A.; Santellano-Estrada, E.; Villarreal-Guerrero, F.; Martinez-Salvador, M.; Pinedo-Alvarez, A.; Vázquez-Quintero, G.; Valles-Aragón, M.C.; Manjarrez-Domínguez, C. Spatial Analysis of Temperate Forest Structure: A Geostatistical Approach to Natural Forest Potential. Forests 2019, 10, 168. https://doi.org/10.3390/f10020168
Prieto-Amparán JA, Santellano-Estrada E, Villarreal-Guerrero F, Martinez-Salvador M, Pinedo-Alvarez A, Vázquez-Quintero G, Valles-Aragón MC, Manjarrez-Domínguez C. Spatial Analysis of Temperate Forest Structure: A Geostatistical Approach to Natural Forest Potential. Forests. 2019; 10(2):168. https://doi.org/10.3390/f10020168
Chicago/Turabian StylePrieto-Amparán, Jesús A., Eduardo Santellano-Estrada, Federico Villarreal-Guerrero, Martin Martinez-Salvador, Alfredo Pinedo-Alvarez, Griselda Vázquez-Quintero, María C. Valles-Aragón, and Carlos Manjarrez-Domínguez. 2019. "Spatial Analysis of Temperate Forest Structure: A Geostatistical Approach to Natural Forest Potential" Forests 10, no. 2: 168. https://doi.org/10.3390/f10020168
APA StylePrieto-Amparán, J. A., Santellano-Estrada, E., Villarreal-Guerrero, F., Martinez-Salvador, M., Pinedo-Alvarez, A., Vázquez-Quintero, G., Valles-Aragón, M. C., & Manjarrez-Domínguez, C. (2019). Spatial Analysis of Temperate Forest Structure: A Geostatistical Approach to Natural Forest Potential. Forests, 10(2), 168. https://doi.org/10.3390/f10020168