Current Advances in Seed Orchard Layouts: Two Case Studies in Conifers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Figures, Tables, and Schemes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zobel, B.J.; Barber, J.; Brown, C.L.; Perry, T.O. Seed orchards—Their concept and management. J. Forest. 1958, 56, 815–825. [Google Scholar]
- Giertych, M. Seed orchard designs. For. Comm. Bull. 1975, 54, 25–37. [Google Scholar]
- White, T.L.; Adams, W.T.; Neale, D.B. Deployment—Open pollinated varieties full-sib families and clones. In Forest Genetics; CABI publishing: Wallingford Oxfordshire, UK, 2007; pp. 439–478. [Google Scholar]
- Funda, T.; El-Kassaby, Y.A. Review: Seed orchards genetics. CAB Rev. 2012, 7, 13. [Google Scholar] [CrossRef]
- Bell, G.D.; Fletcher, A.M. Computer organised orchard layouts (COOL) based on the permutated neighbourhood design concept. Silvae Genet. 1978, 27, 223–225. [Google Scholar]
- Charkravarty, G.N.; Bagchi, S.K. Enhancement of the computer program of the permutated neighborhood seed orchard design. Silvae Genet. 1994, 43, 177–179. [Google Scholar]
- Lstibůrek, M.; Stejskal, J.; Misevicius, A.; Korecký, J.; El-Kassaby, Y.A. Expansion of the minimum-inbreeding seed orchard design to operational scale. Tree Genet. Genomes 2015, 11, 12. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A. Clonal-row vs. random seed orchard designs: Mating pattern and seed yield of western hemlock (Tsuga heterophylla (Raf.) Sarg.). For. Genet. 2003, 10, 121–127. [Google Scholar]
- El-Kassaby, Y.A.; Stoehr, M.U.; Reid, D.; Walsh, C.G.; Lee, T.E. Clonal-row vs. random seed orchard designs: Interior spruce mating system evaluation. Can. J. For. Res. 2007, 37, 690–696. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A.; Fayed, M.; Klápště, J.; Lstibůrek, M. Randomized, replicated, staggered clonal-row (R2SCR) seed orchard design. Tree Genet. Genomes 2014, 10, 555–563. [Google Scholar] [CrossRef]
- Mitton, J.B. The dynamic mating systems of conifers. New Forest. 1992, 6, 197–216. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A. Evaluation of the tree improvement delivery system: Factors affecting the genetic potential. Tree Physiol. 1995, 15, 545–550. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, L.M. The Evolution of Inbreeding in Western Redcedar (Thuja plicata: Cupressaceae). Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 2003. [Google Scholar]
- Griffin, A.R.; Lindgren, D. Effect of inbreeding on production of filled seed in Pinus radiata experimental results and a model of gene action. Theor. Appl. Genet. 1985, 71, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.H.; Heaman, J.C. Effect of different inbreeding levels on filled seed production in Douglas-fir. Can. J. For. Res. 1989, 19, 54–59. [Google Scholar] [CrossRef]
- Williams, C.G.; Savolainen, O. Inbreeding depression in conifers: Implications for breeding strategy. For. Sci. 1996, 42, 102–117. [Google Scholar]
- Chaloupková, K.; Stejskal, J.; El-Kassaby, Y.A.; Lstibůrek, M. Optimum neighborhood seed orchard design. Tree Genet. Genomes 2016, 12, 105. [Google Scholar] [CrossRef]
- Lstibůrek, M.; El-Kassaby, Y.A. Minimum-inbreeding seed orchard design. For. Sci. 2010, 56, 603–608. [Google Scholar]
- Yanchuk, A.D.; Bishir, J.W.; Russel, J.H.; Polsson, K.R. Variation in volume production through clonal deployment: Results from a simulation model to minimize risk for both a currently known and unknown future pest. Silvae Genet. 2006, 55, 25–37. [Google Scholar] [CrossRef]
- Wu, H.X. Benefits and risk of using clones in forestry—A review. Scan. J. For. Res. 2018, 33. [Google Scholar] [CrossRef]
- Namkoong, G.; Kang, H.C.; Brouard, J.S. Provenance testing, ecogeographic surveys, and conservation. In Tree Breeding: Principles and Strategies; Springer: New York, NY, USA, 1988; pp. 132–159. [Google Scholar]
- Frankel, O.H.; Brown, A.H.D.; Burdon, J.J. The Conservation of Plant Biodiversity; Cambridge University: Cambridge, UK, 1995. [Google Scholar]
- Erickson, V.J.; Adams, W.T. Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Can. J. For. Res. 1989, 19, 1248–1255. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A.; Reynolds, S. Reproductive phenology, parental balance, and supplemental mass pollination in a sitka-spruce seed-orchard. Forest Ecol. Manag. 1990, 31, 1–2. [Google Scholar] [CrossRef]
- Nikkanen, T. Reproductive phenology in a Norway spruce seed orchard. Silva Fenn. 2001, 35, 39–53. [Google Scholar] [CrossRef]
- Zas, A.R.; Merlo, E.; Fernández, L.J. SYNCHRO: A SAS program for analysing the floral phenological synchronisation in seed orchards. Silvae Genet. 2003, 52, 212–215. [Google Scholar]
- Slavov, G.T.; Howe, G.T.; Adams, W.T. Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can. J. For. Res. 2005, 35, 1592–1603. [Google Scholar] [CrossRef]
- Torimaru, T.; Wang, X.R.; Fries, A.; Anderson, B.; Lindgren, D. Evaluation of pollen contamination in an advanced Scots pine seed orchard. Silvae Genet. 2009, 58, 262–269. [Google Scholar] [CrossRef]
- Pakkanen, A.; Nikkanen, T.; Pulkkinen, P. Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard. Scan. J. For. Res. 2000, 15, 399–404. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A.; Lstibůrek, M. Breeding without breeding. Genet. Res. 2009, 91, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Lstibůrek, M.; Klápště, J.; Kobliha, J.; El-Kassaby, Y.A. Breeding without breeding: Effect of gene flow on fingerprinting effort. Tree Genet. Genomes 2012, 8, 873–877. [Google Scholar] [CrossRef]
- Lstibůrek, M.; Ivanková, K.; Kadlec, J.; Kobliha, J.; Klápště, J.; El-Kassaby, Y.A. Breeding without breeding: Minimum fingerprinting effort with respect to the effective population size. Tree Genet. Genomes 2011, 7, 1069–1078. [Google Scholar] [CrossRef]
- Lstibůrek, M.; Hodge, G.R.; Lachout, P. Uncovering genetic information from commercial forest plantations—Making up for lost time using “breeding without breeding”. Tree Genet. Genomes 2015, 11, 55. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaloupková, K.; Stejskal, J.; El-Kassaby, Y.A.; Frampton, J.; Lstibůrek, M. Current Advances in Seed Orchard Layouts: Two Case Studies in Conifers. Forests 2019, 10, 93. https://doi.org/10.3390/f10020093
Chaloupková K, Stejskal J, El-Kassaby YA, Frampton J, Lstibůrek M. Current Advances in Seed Orchard Layouts: Two Case Studies in Conifers. Forests. 2019; 10(2):93. https://doi.org/10.3390/f10020093
Chicago/Turabian StyleChaloupková, Kateřina, Jan Stejskal, Yousry A. El-Kassaby, John Frampton, and Milan Lstibůrek. 2019. "Current Advances in Seed Orchard Layouts: Two Case Studies in Conifers" Forests 10, no. 2: 93. https://doi.org/10.3390/f10020093
APA StyleChaloupková, K., Stejskal, J., El-Kassaby, Y. A., Frampton, J., & Lstibůrek, M. (2019). Current Advances in Seed Orchard Layouts: Two Case Studies in Conifers. Forests, 10(2), 93. https://doi.org/10.3390/f10020093