Drought Impacts and Compounding Mortality on Forest Trees in the Southern Sierra Nevada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plot Establishment and Field Measurements
2.3. Mortality by Species and Size
3. Results
3.1. Abies Concolor
3.2. Calocedrus Decurrens
3.3. Pinus Lambertiana
3.4. Pinus Ponderosa
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impacts of global change on Mediterranean forests and their services. Forests 2017, 8, 463. [Google Scholar] [CrossRef]
- Clark, J.S.; Iverson, L.; Woodall, C.W.; Allen, C.D.; Bell, D.M.; Bragg, D.C.; D’Amato, A.W.; Davis, F.W.; Hersh, M.H.; Ibanez, I.; et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 2016, 22, 2329–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Breshears, D.D.; Myers, O.B.; Meyer, C.W.; Barnes, F.J.; Zou, C.B.; Allen, C.D.; McDowell, N.G.; Pockman, W.T. Tree die-off in response to global change-type drought: Mortality insights from a decade of plant water potential measurements. Front. Ecol. Environ. 2009, 7, 185–189. [Google Scholar] [CrossRef]
- Asner, G.P.; Brodrick, P.G.; Anderson, C.B.; Vaughn, N.; Knapp, D.E.; Martin, R.E. Progressive forest canopy water loss during the 2012–2015 California drought. Proc. Natl. Acad. Sci. USA 2016, 113, E249–E255. [Google Scholar] [CrossRef] [PubMed]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fensham, R.J.; Fairfax, R.J.; Ward, D.P. Drought-induced tree death in savanna. Glob. Chang. Biol. 2009, 15, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Park Williams, A.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2012, 3, 292. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Clark, J.S.; Iverson, L.; Woodall, C.W. Impacts of increasing drought on forest dynamics, structure, diversity, and management. In Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis; Vose, J.M., Clark, J.S., Luce, C.H., Patel-Weynand, T., Eds.; USDA Forest Service Research and Development: Washington, DC, USA, 2016. [Google Scholar]
- Régnière, J.; Powell, J.; Bentz, B.; Nealis, V. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J. Insect Physiol. 2012, 58, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.; Anchukaitis, K.J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 2014, 41, 9017–9023. [Google Scholar] [CrossRef]
- Brown, P.M.; Hughes, M.K.; Baisan, C.H.; Swetnam, T.W.; Caprio, A.C. Giant Sequoia Ring-Width Chronologies from the Central Sierra Nevada, California. Tree-Ring Bull. 1992, 1992, 1–14. [Google Scholar]
- Belmecheri, S.; Babst, F.; Wahl, E.R.; Stahle, D.W.; Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nat. Clim. Chang. 2015, 6, 2. [Google Scholar] [CrossRef]
- Robeson, S.M. Revisiting the recent California drought as an extreme value. Geophys. Res. Lett. 2015, 42, 6771–6779. [Google Scholar] [CrossRef] [Green Version]
- USDA Office of Communications. New Aerial Survey Identifies More Than 100 Million Dead Trees in California; USDA Forest Service: Vallejo, CA, USA, 2016.
- Savage, M. Anthropogenic and natural disturbance and patterns of mortality in a mixed conifer forest in California. Can. J. For. Res. 1994, 24, 1149–1159. [Google Scholar] [CrossRef]
- McIntyre, P.J.; Thorne, J.H.; Dolanc, C.R.; Flint, A.L.; Flint, L.E.; Kelly, M.; Ackerly, D.D. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proc. Natl. Acad. Sci. USA 2015, 112, 1458–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safford, H.D.; Stevens, J.T. Natural Range of Variation for Yellow Pine and Mixed-Conifer Forests in the Sierra Nevada, Southern Cascades, and Modoc and Inyo National Forests, California, USA; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2017.
- van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fulé, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread increase of tree mortality rates in the western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.J.; Engelbrecht, B.M.J.; Joswig, J.; Pereyra, G.; Schuldt, B.; Jansen, S.; Kattge, J.; Landhäusser, S.M.; Levick, S.R.; Preisler, Y.; et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 2017, 54, 1669–1686. [Google Scholar] [CrossRef]
- Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience 2008, 58, 501–517. [Google Scholar] [CrossRef]
- Furniss, R.L.; Carolin, V.M. Western Forest Insects; US Department of Agriculture, Forest Service: Washington, DC, USA, 1977; p. 654.
- Young, D.J.N.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 2017, 20, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Restaino, C.; Young, D.; Estes, B.; Gross, S.; Wuenschel, A.; Meyer, M.; Safford, H.D. Forest density-reduction treatments, stand structural characteristics, and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. Ecol. Appl. 2019, in press. [Google Scholar]
- North, M.; Stine, P.; O’Hara, K.; Zielinski, W.; Stephens, S. An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests; General Technical Report PSW-GTR-220; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2009.
- Schultz, C.A.; Jedd, T.; Beam, R.D. The Collaborative Forest Landscape Restoration Program: A history and overview of the first projects. J. For. 2012, 110, 381–391. [Google Scholar] [CrossRef]
- Bales, R.C.; Hopmans, J.W.; O’Geen, A.T.; Meadows, M.; Hartsough, P.C.; Kirchner, P.; Hunsaker, C.T.; Beaudette, D. Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J. 2011, 10, 786–799. [Google Scholar] [CrossRef]
- United States Natural Resources Conservation Service. Soil Survey Geographic (SSURGO) Database for Sierra National Forest Area, Parts of Fresno, California; US Department of Agriculture: Fort Worth, TX, USA, 2009.
- Guarín, A.; Taylor, A.H. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For. Ecol. Manag. 2005, 218, 229–244. [Google Scholar] [CrossRef]
- Pile, L.S.; Meyer, M.D.; Rojas, R.; Roe, O. Characterizing tree morality after extreme drought and insect outbreaks in the southern Sierra Nevada. In Proceedings of the 19th Biennial Southern Silvicultural Research Conference, Blacksburg, VA, USA, 14–16 March 2017. [Google Scholar]
- Lloret, F.; Siscart, D.; Dalmases, C. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob. Chang. Biol. 2004, 10, 2092–2099. [Google Scholar] [CrossRef]
- Valladares, F.; Sánchez-Gómez, D. Ecophysiological traits associated with drought in Mediterranean tree seedlings: Individual responses versus interspecific trends in eleven species. Plant Biol. 2006, 8, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Bega, R.V. Diseases of Pacific Coast Conifers; US Department of Agriculture: Washington, DC, USA, 1978; p. 204.
- Minnich, R.A. Climate, paleoclimate, and paleovegetation. In Terrestrial Vegetation of California; Barbour, M., Keeler-Wolf, T., Schoenherr, A., Eds.; University of California Press: Berkeley, CA, USA, 2007; pp. 43–70. [Google Scholar]
- Fettig, C.J.; Mortenson, L.A.; Bulaon, B.M.; Foulk, P.B. Tree mortality following drought in the central and southern Sierra Nevada, California, U.S. For. Ecol. Manag. 2019, 432, 164–178. [Google Scholar] [CrossRef]
- California Forest Pest Control Action Council. Forest Pest Conditions in California—1977; California Forest Pest Control Action Council: Sacamento, CA, USA, 1978; p. 15.
- California Forest Pest Control Action Council. Forest Pest Conditions in California—1978; California Forest Pest Control Action Council: Sacamento, CA, USA, 1979; p. 25.
- Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. J. Biogeogr. 2010, 37, 936–950. [Google Scholar] [CrossRef]
- Slack, A.; Kane, J.; Knapp, E.; Sherriff, R. Contrasting impacts of climate and competition on large sugar pine growth and defense in a fire-excluded forest of the central Sierra Nevada. Forests 2017, 8, 244. [Google Scholar] [CrossRef]
- Zhang, J.; Ritchie, M.W.; Maguire, D.A.; Oliver, W.W. Thinning ponderosa pine (Pinus ponderosa) stands reduces mortality while maintaining stand productivity. Can. J. For. Res. 2013, 43, 311–320. [Google Scholar] [CrossRef]
- Preisler, H.K.; Grulke, N.E.; Heath, Z.; Smith, S.L. Analysis and out-year forecast of beetle, borer, and drought-induced tree mortality in California. For. Ecol. Manag. 2017, 399, 166–178. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and the forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.S.; Constance, I.M.; Brandon, M.C. Operational approaches to managing forests of the future in Mediterranean regions within a context of changing climates. Environ. Res. Lett. 2010, 5, 024003. [Google Scholar] [Green Version]
- Stephens, S.L.; Fry, D.L.; Franco-Vizcaino, E. Wildfire and spatial patterns in forests in Northwestern Mexico: The United States wishes it had similar problems. Ecol. Soc. 2008, 13, 10. [Google Scholar] [CrossRef]
Species (Species Code) | n | Plot ň (Range) | DBH (cm) | Height (m) | TPH | BA (m2/ha) | Elevation (m) |
---|---|---|---|---|---|---|---|
Abies concolor (ABCO) | 451 | 1.90 (0–15) | 65.9 (19.8) | 31 (10) | 141 (139) | 31.1 (20.5) | 1190–2255 |
Abies magnifica (ABMA) | 37 | 0.16 (0–9) | 81.1 (33.2) | 37 (14) | 140 (125) | 41.3 (26.0) | 2100–2255 |
Calocedrus decurrens (CADE) | 220 | 0.93 (0–8) | 61.4 (26.8) | 23 (9) | 91 (83) | 16.7 (10.9) | 915–2040 |
Pinus lambertiana (PILA) | 107 | 0.45 (0–5) | 91.2 (31.5) | 37 (12) | 36 (40) | 13.8 (8.1) | 1160–2195 |
Pinus ponderosa (PIPO) | 316 | 1.33 (0–11) | 68.0 (24.6) | 33 (11) | 91 (90) | 20.9 (16.8) | 915–1950 |
Quercus kelloggii (QUKE) | 73 | 0.31 (0–3) | 59.6 (21.4) | 17 (6) | 86 (89) | 14.1 (6.7) | 915–2070 |
n | DBH (cm) | HEIGHT (m) | ||||
---|---|---|---|---|---|---|
Species1 | 2015 | 2017 | SPRING 2015 | SUMMER 2017 | SPRING 2015 | SUMMER 2017 |
ABCO | 372 | 237 | 64.5 ± 26.9 (26.9–203.7) | 68.1 ± 25.9 (26.9–198.6) | 32 ± 9 (10–58) | 32 ± 9 (10–57) |
ABMA | 36 | 34 | 84.3 ± 38.9 (30.5–154.7) | 84.6 ± 39.4 (30.5–154.7) | 37 ± 14 (13–70) | 37 ± 14 (13–70) |
CADE | 205 | 154 | 62.5 ± 28.5 (25.7–160.5) | 63.5 ± 29.0 (25.7–160.5) | 24 ± 9 (8–49) | 24 ± 9 (8–49) |
PILA | 69 | 23 | 91.2 ± 36.3 (36.1–176.5) | 105.2 ± 38.6 (36.1–173.5) | 40 ± 11 (19–60) | 45 ± 11 (21–60) |
PIPO | 228 | 44 | 68.3 ± 25.7 (27.2–149.3) | 71.6 ± 26.2 (27.2–127.5) | 34 ± 11 (13–65) | 34 ± 10 (19–63) |
QUKE | 69 | 66 | 58.4 ± 24.6 (26.7–152.1) | 58.9 ± 24.9 (26.7–152.2) | 17 ± 6 (4–37) | 17 ± 6 (4–37) |
Spring 2015 | |||||||||
Species 1 | n | HGT | DBH | BA | PINE | ||||
estimate | p-value | estimate | p-value | estimate | p-value | estimate | p-value | ||
ABCO | 451 | 0.0193 | < 0.001 | −0.0151 | 0.1684 | −0.0041 | < 0.001 | 0.3112 | 0.6160 |
CADE | 220 | 0.0552 | < 0.001 | 0.0905 | 0.0080 | −0.0052 | 0.0232 | −1.1009 | 0.3247 |
PILA | 107 | 0.0239 | < 0.001 | 0.0302 | 0.0450 | 0.0005 | 0.7557 | −0.4358 | 0.6148 |
PIPO | 316 | 0.0118 | 0.0011 | 0.0108 | 0.0085 | 0.0040 | 0.0012 | −0.7481 | 0.1181 |
Summer 2017 | |||||||||
ABCO | 259 | 0.0106 | 0.0004 | 0.0009 | 0.9119 | −0.0016 | 0.0275 | 0.0455 | 0.9214 |
CADE | 177 | 0.0151 | 0.0045 | 0.0260 | 0.0648 | 0.0010 | 0.4276 | −0.4724 | 0.4559 |
PILA | 26 | 0.0272 | < 0.001 | 0.0466 | 0.0046 | 0.0045 | 0.0326 | −1.4459 | 0.1843 |
PIPO | 57 | −2.3702 | 0.2606 | 0.0250 | 0.1110 | 0.0025 | 0.0852 | −3.0229 | < 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pile, L.S.; Meyer, M.D.; Rojas, R.; Roe, O.; Smith, M.T. Drought Impacts and Compounding Mortality on Forest Trees in the Southern Sierra Nevada. Forests 2019, 10, 237. https://doi.org/10.3390/f10030237
Pile LS, Meyer MD, Rojas R, Roe O, Smith MT. Drought Impacts and Compounding Mortality on Forest Trees in the Southern Sierra Nevada. Forests. 2019; 10(3):237. https://doi.org/10.3390/f10030237
Chicago/Turabian StylePile, Lauren S., Marc D. Meyer, Ramiro Rojas, Olivia Roe, and Mark T. Smith. 2019. "Drought Impacts and Compounding Mortality on Forest Trees in the Southern Sierra Nevada" Forests 10, no. 3: 237. https://doi.org/10.3390/f10030237
APA StylePile, L. S., Meyer, M. D., Rojas, R., Roe, O., & Smith, M. T. (2019). Drought Impacts and Compounding Mortality on Forest Trees in the Southern Sierra Nevada. Forests, 10(3), 237. https://doi.org/10.3390/f10030237