In Vitro Propagation of Oriental White Oak Quercus aliena Blume
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Culture Initiation
2.3. Subculture for Shoot Proliferation
2.4. Rooting and Acclimatization
2.5. Statistical Analysis
3. Results
3.1. Aseptic Establishment and Initiation Culture
3.2. Shoot Multiplication Stage
3.3. Rooting Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, C.C.; Chang, Y.T.; Bartholomew, B. Fagaceae. In Flora of China; Wu, C.Y., Raven, P.H., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; Volume 4, pp. 370–380. [Google Scholar]
- Liu, Y.; Liu, G.; LI, Q.; Liu, Y.; Hou, L.; LI, G. Influence of pericarp, cotyledon and inhibitory substances on sharp tooth oak (Quercus aliena var. acuteserrata) germination. PLoS ONE 2012, 7, e47682. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; You, Y.-H. Measurement of ecological niche of Quercus aliena and Q. serrata under environmental factors treatments and its meaning to ecological distribution. J. Ecol. Environ. 2012, 35, 227–234. [Google Scholar] [CrossRef]
- Liu, Y.; LI, Y.; Song, J.; Zhang, R.; Yan, Y.; Wang, Y.; Du, F.K. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae). Ann. For. Sci. 2018, 75, 90. [Google Scholar] [CrossRef]
- Whang, B.-C.; Lee, M.-W. Landscape ecology planning principles in Korean Feng-Shui, Bi-bo woodlands and ponds. Landsc. Ecol. Engin. 2006, 2, 147–162. [Google Scholar] [CrossRef]
- Park, H.J.; Park, Y.-K.; Dong, J.-I.; Kim, J.-S.; Jeon, J.-K.; Kim, S.-S.; Kim, J.; Song, B.; Park, J.; Lee, K.-J. Pyrolysis characteristics of Oriental white oak: Kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system. Fuel Proc. Technol. 2009, 90, 186–195. [Google Scholar] [CrossRef]
- Chang, G.; Jin, T.; Pei, J.; Chen, X.; Zhang, B.; Shi, Z. Seed dispersal of three sympatric oak species by forest rodents in the Qinling Mountains, Central China. Plant Ecol. 2012, 213, 1633–1642. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Z.; Wang, T.; Perry, L.; Li, Q.; Huan, X.; Yu, J. Starch grain evidence reveals early pottery function cooking plant foods in North China. Chin. Sci. Bull. 2014, 59, 4352–4358. [Google Scholar] [CrossRef]
- Jin, Y.-S.; Jin, Y.-S.; Heo, S.-I.; Jin, Y.-S.; Heo, S.-I.; Lee, M.-J.; Rhee, H.-I.; Wang, M.-H. Free radical scavenging and hepatoprotective actions of Quercus aliena acorn extract against CCl4-induced liver. Free radic. Res. 2005, 39, 1351–1358. [Google Scholar] [CrossRef]
- Clark, S.; Schalarbaum, S.; Kormanik, P.P. Visual grading and quality of 1-0 northern red oak seedlings. South. J. Appl. For. 2000, 24, 93–97. [Google Scholar]
- Kormanik, P.P.; Sung, S.; Kormanik, T.; Schlarbaum, S.; Zarnoch, S.J. Effect of acorn size on development of northern red oak 1-0 seedlings. Can. J. For. Res. 1998, 28, 1805–1813. [Google Scholar] [CrossRef]
- Clark, S.L.; Schlarbaum, S.E. Effects of acorn size and mass on seedling quality of northern red oak (Quercus rubra). New For. 2018, 49, 571–583. [Google Scholar] [CrossRef]
- Yu, F.; Shi, X.; Wang, D.; Yi, X.; Fan, D.; Guo, T.; Lou, Y. Effects of insect infestation on Quercus aliena var. acuteserrata acorn dispersal in the Qinling Mountains, China. New For. 2015, 46, 51–61. [Google Scholar]
- Lombardo, J.A.; Mccarthy, B.C. Seed germination and seedling vigor of weevil-damaged acorns of red oak. Can. J. For. Res. 2009, 39, 1600–1605. [Google Scholar] [CrossRef]
- Yi, X.; Yang, Y. Large acorns benefit seedling recruitment by satiating weevil larvae in Quercus aliena. Plant Ecol. 2010, 209, 291–300. [Google Scholar] [CrossRef]
- Kanno, M.; Yokoyama, J.; Suyama, Y.; Ohyama, M.; Itoh, T.; Suzuki, M. Geographical distribution of two haplotypes of chloroplast DNA in four oak species (Quercus) in Japan. J. Plant Res. 2004, 117, 311–317. [Google Scholar] [CrossRef]
- Oliveira, P.; Custódio, A.C.; Branco, C.; Reforço, I.; Rodrigues, F.; Varela, M.C.; Meierrose, C. Hybrids between cork oak and holm oak: Isoenzyme analysis. Int. J. For. Genet. 2003, 10, 283–298. [Google Scholar]
- Wu, H.X. Benefits and risks of using clones in forestry—a review. Scand. J. For. Res. 2018, 1–8. [Google Scholar] [CrossRef]
- Amissah, J.N.; Paolillo, D.J.; Bassuk, N. Adventitious root formation in stem cuttings of Quercus bicolor and Quercus macrocarpa and its relationship to stem anatomy. J. Am. Soc. Hortic. Sci. 2008, 133, 479–486. [Google Scholar] [CrossRef]
- Amissah, J.N.; Bassuk, N. Cutting back stock plants promotes adventitious rooting of stems of Quercus bicolor and Quercus macrocarpa. J. Envir. Hortic. 2009, 27, 159–165. [Google Scholar]
- Vieitez, A.M.; Corredoira, E.; Martínez, M.T.; San-josé, M.C.; Sánchez, C.; Valladares, S.; Vidal, N.; Ballester, A. Application of biotechnological tools to Quercus improvement. Eur. J. For. Res. 2012, 131, 519–539. [Google Scholar] [CrossRef]
- Brennan, A.N.; Pence, V.C.; Taylor, M.D.; Trader, B.W.; Westwood, M. Tissue Culture Using Mature Material for the Conservation of Oaks. HortTechnology 2017, 27, 644–649. [Google Scholar] [CrossRef]
- San josé, M.; Martínez, M.; Cernadas, M.; Montenegro, R.; Mosteiro, F.; Corredoira, E. Biotechnological efforts for the propagation of Quercus lusitanica Lam., an endangered species. Trees 2017, 31, 1571–1581. [Google Scholar]
- Lloyd, G.; McCown, B. Commercially-feasible micro-propagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb. Proc. Int. Plant Prop. Soc. 1980, 30, 421–427. [Google Scholar]
- Galkovskyi, T.; Mileyko, Y.; Bucksch, A.; Moore, B.; Symonova, O.; Price, C.A.; Topp, C.N.; Iyer-Pascuzzi, A.S.; Zurek, P.R.; Fang, S. GiA Roots: Software for the high throughput analysis of plant root system architecture. BMC plant boil. 2012, 12, 116. [Google Scholar] [CrossRef]
- Li, Q.; LI, X.; Tang, B.; Gu, M. Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae 2018, 4, 35. [Google Scholar] [CrossRef]
- Manzanera, J.; Pardos, J. Micropropagation of juvenile and adult Quercus suber L. Plant Cell Tissue Organ. Cult. 1990, 21, 1–8. [Google Scholar] [CrossRef]
- Romano, A.; Louçao, M.M. Micropropagation of mature cork-oak (Quercus suber L.): Establishment problems. Sc. Gerund. 1992, 18, 17–27. [Google Scholar]
- Razdan, M.K. Introduction to plant tissue culture; Science Publishers: Enfield, NH, USA, 2003. [Google Scholar]
- Smith, R.H. Plant tissue culture: Techniques and experiments; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Pandey, A.; Sekar, K.C.; Tamta, S.; Rawal, R. Assessment of phytochemicals, antioxidant and antimutagenic activity in micropropagated plants of Quercus serrata, a high value tree species of Himalaya. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2018, 152, 929–936. [Google Scholar] [CrossRef]
- Martínez, M.T.; Corredoira, E.; Vieitez, A.M.; Cernadas, M.J.; Montenegro, R.; Ballester, A.; Vieitez, F.J.; San José, M.C. Micropropagation of mature Quercus ilex L. trees by axillary budding. Plant Cell Tissue Organ. Cult. 2017, 131, 499–512. [Google Scholar] [CrossRef]
- De Klerk, G.-J. Rooting of microcuttings: Theory and practice. Vitr. Cell. Dev. Biol.-Plant 2002, 38, 415–422. [Google Scholar] [CrossRef]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef]
- Martínez, M.T.; Vieitez, A.M.; Corredoira, E. Improved secondary embryo production in Quercus alba and Q. rubra by activated charcoal, silver thiosulphate and sucrose: Influence of embryogenic explant used for subculture. Plant Cell Tissue Organ. Cult. 2015, 121, 531–546. [Google Scholar] [CrossRef]
- Lebtahi, F.; Errahmani, M.B.; Bouguedoura, N. Propagation of cork oak (Quercus Suber, L.) by axillary shoot and somatic embryogenesis. Propag. Ornam. Plants 2015, 15, 113–122. [Google Scholar]
- Pandey, A.; Tamta, S. In vitro propagation of the important tasar oak (Quercus serrata Thunb.) by casein hydrolysate promoted high frequency shoot proliferation. J. Sustain. For. 2014, 33, 590–603. [Google Scholar] [CrossRef]
- Purohit, V.K.; Tamta, S.; Chandra, S.; Vyas, P.; Palni, L.M.S.; Nandi, S.K. In vitro multiplication of Quercus leucotrichophora and Q. glauca: Important Himalayan oaks. Plant Cell Tissue Organ. Cult. 2002, 69, 121–133. [Google Scholar] [CrossRef]
- Meier-dinkel, A.; Becker, B.; Duckstein, D. Micropropagation and ex vitro rooting of several clones of late-flushing Quercus robur L. Ann. For. Sci. 1993, 50, 319–322. [Google Scholar] [CrossRef]
- Liñán, J.; Cantos, M.; Troncoso, J.; García, J.L.; Fernández, A.; Troncoso, A. Some propagation methods for cloning holm oak (Quercus ilex L.) plants. Cent. Eur. J. Biol. 2011, 6, 359–364. [Google Scholar] [CrossRef]
- Romano, A.; Martins-louçao, M. Strategies to improve rooting and acclimatization of cork oak. Acta Hortic. 2003, 616, 275–278. [Google Scholar] [CrossRef]
- Oakes, A.D.; Desmarais, T.R.; Powell, W.A.; Maynard, C.A. Ex vitro rooting of American chestnut improves acclimatization survival and plantlet quality. J. Envir. Hortic. 2016, 34, 75–79. [Google Scholar]
Media | BA (mg·L−1) | Bud No. from Shoot Tip | Bud No. from Nodal Segment | Bud Induction Rate from Nodal Segment (%) |
---|---|---|---|---|
WPM | 0.5 | 2.0 ± 0.14a | 1.0 ± 0.1c | 7.1% ± 0.2c |
WPM | 1.0 | 1.0 ± 0.12a | 2.0 ± 0.4bc | 14.3% ± 0.5b |
WPM | 2.0 | 0.6 ± 0.04a | 3.3 ± 0.5b | 23.8% ± 0.3b |
2/3WPM | 2.0 | 1.0 ± 0.09a | 6.0 ± 0.2a | 42. 8% ± 0.2a |
1/2WPM | 2.0 | 1.3 ± 0.11a | 7.4 ± 0.4a | 54.8% ± 0.5a |
BA (mg·L−1) | IBA (mg·L−1) | Shoot No. per Explant | Morphology of Adventitious Shoots and Explants |
---|---|---|---|
0.1 | 0 | 1.5 ± 0.1d | very few loose calluses, but shoot growth is slow |
0.1 | 0.01 | 1.8 ± 0.2d | loose callus |
0.1 | 0.05 | 2.4 ± 0.1c | some compact calluses |
0.5 | 0 | 2.9 ± 0.3bc | some loose calluses |
0.5 | 0.01 | 2.6 ± 0.3c | few loose calluses, narrow leaves |
0.5 | 0.05 | 3.1 ± 0.2ab | few loose calluses, stems sturdy, shoots grow fast |
1.0 | 0 | 3.7 ± 0.2ab | some loose calluses, more leaves, some hyperhydration |
1.0 | 0.01 | 4.5 ± 0.3a | mass loose calluses, shorter internode, some hyperhydration |
1.0 | 0.05 | 4.3 ± 0.2a | mass compact calluses, some rooted, more hyperhydration |
Significance | |||
BA | ** | ||
IBA | ns | ||
BA × IBA | * |
IBA (mg·L−1) | Activated Charcoal (AC, 0.5%) | Rooting Percentage (%) | Average Root No. | Survival Rate after Transplanting (%) |
---|---|---|---|---|
0 | yes | 14.5 ± 0.8c | 1.4 ± 0.2c | 27 ± 2.8b |
0.5 | yes | 25.5 ± 2.1b | 1.7 ± 0.1b | 55 ± 3.5b |
1.0 | yes | 41.5 ± 3.2a | 2.1 ± 0.3a | 76 ± 4.5a |
0 | no | 16.3 ± 2.3c | 1.3 ± 0.2c | 15 ± 1.7c |
0.5 | no | 21.1 ± 1.9b | 1.8 ± 0.1ab | 28 ± 3.6c |
1.0 | no | 28.6 ± 2.1b | 1.6 ± 0.3b | 43 ± 3.8b |
Significance | ||||
IBA | * | ns | * | |
AC | ns | ns | ns | |
IBA × AC | ns | ns | ns |
Root In Vitro | Root Ex Vitro | Significance | |
---|---|---|---|
Average Root Diameter (mm) | 0.33 ± 0.02 | 0.51 ± 0.02 | ** |
Total Root Length (cm) | 9.60 ± 0.27 | 28.80 ± 0.62 | ** |
Root Area (cm2) | 1.07 ± 0.05 | 4.48 ± 0.20 | ** |
Root Volume (cm3) | 0.01 ± 0.001 | 0.06 ± 0.001 | ** |
Maximum No. of Roots | 5.60 ± 0.51 | 9.40 ± 0.51 | ** |
Median No. of Roots | 2.40 ± 0.24 | 4.80 ± 0.37 | ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Gu, M.; Deng, M. In Vitro Propagation of Oriental White Oak Quercus aliena Blume. Forests 2019, 10, 463. https://doi.org/10.3390/f10060463
Li Q, Gu M, Deng M. In Vitro Propagation of Oriental White Oak Quercus aliena Blume. Forests. 2019; 10(6):463. https://doi.org/10.3390/f10060463
Chicago/Turabian StyleLi, Qiansheng, Mengmeng Gu, and Min Deng. 2019. "In Vitro Propagation of Oriental White Oak Quercus aliena Blume" Forests 10, no. 6: 463. https://doi.org/10.3390/f10060463
APA StyleLi, Q., Gu, M., & Deng, M. (2019). In Vitro Propagation of Oriental White Oak Quercus aliena Blume. Forests, 10(6), 463. https://doi.org/10.3390/f10060463