Growth Ring Measurements of Shorea robusta Reveal Responses to Climatic Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Study Area
2.3. Data Collection
2.4. Laboratory Analysis of Disc Samples
2.4.1. Preparation of Samples
2.4.2. Counting, Dating, Measurement, and Cross-Dating of Samples
2.5. Standardization and Chronology Development
2.6. BAI Analysis
2.7. Growth-Climate Relationship
2.8. Microscopic Observations of the Thin-Section of the Disc Sample
3. Results
3.1. Annual Growth and Dendroclimatic Potential of S. robusta
3.2. Growth-Climate Relationship of S. robusta
3.3. Basal Area Increment (BAI) Analysis
3.4. Wood Anatomical Analysis
4. Discussion
4.1. Growth Depends on Various Underlying Factors
4.2. Climatic Factors Mainstream Growth
4.3. Basal Area Increments for Growth Analysis
4.4. Wood Anatomical Analysis as an Indicator
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fritts, H.C. Tree Rings and Climate; Cambridge University Press: Cambridge, UK, 1976; 567p. [Google Scholar]
- Speer, J.H. Fundamentals of Tree Ring Research; The University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Gaire, N.P.; Dhakal, Y.R.; Lekhak, H.C.; Bhuju, D.R.; Shah, S.K. Dynamics of Abies spectabilis. In relation to climate change at the treeline ecotone in Langtang National Park. Nepal J. Sci. Technol. 2011, 12, 220–229. [Google Scholar] [CrossRef]
- Gaire, N.P.; Koirala, M.; Bhuju, D.R.; Borgaonkar, H.P. Treeline dynamics with climate change at the central Nepal Himalaya. Clim. Past 2014, 10, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Fan, Z.X.; Jump, A.S.; Li, S.F.; Zhou, Z.K. Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia 2017, 41, 34–43. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Liu, Y.; Leavitt, S.W.; Liang, E. Dendrochronology in Asia. Quat. Int. 2013, 283, 1–2. [Google Scholar] [CrossRef]
- Zhao, S.; Pederson, N.; D’Orangeville, L.; HilleRisLambers, J.; Boose, E.; Penone, C.; Bauer, B.; Jiang, Y.; Manzanedo, R.D. The International Tree-Ring Data Bank (ITRDB) revisited: Data availability and global ecological representativity. J. Biogeogr. 2019, 46, 355–368. [Google Scholar] [CrossRef]
- Anhuf, D.; Schleser, G.H. Tree ring studies in the tropics and subtropics. Erdkund 2017, 71, 1–4. [Google Scholar] [CrossRef]
- Pumijumnong, N. Dendrochronology in Southeast Asia. Trees 2012, 27, 343–358. [Google Scholar] [CrossRef]
- Islam, M.; Rahman, M.; Bräuning, A. Growth-Ring boundary anatomy and dendrochronological potential in a Moist Tropical Forest in Northeastern Bangladesh. Tree-Ring Res. 2018, 74, 76–93. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.; Wernicke, J.; Bräuning, A. Changes in Sensitivity of Tree-Ring Widths to Climate in a Tropical Moist Forest Tree in Bangladesh. Forests 2018, 9, 761. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Shah, S.K. Tree-ring studies in India: Past appraisal, present status and future prospects. IAWA J. 2009, 30, 361–370. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Yadav, R.R.; Borgaonkar, H.P.; Pant, G.B. Growth-ring analysis of Indian tropical trees: Dendroclimatic potential. Curr. Sci. 1992, 62, 736–741. [Google Scholar]
- Nath, C.D.; Dattaraja, H.S.; Suresh, H.S.; Joshi, N.V.; Sukumar, R. Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India. J. Biosci. 2006, 31, 651–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepak, M.S.; Sinha, S.K.; Rao, R.V. Tree-ring analysis of teak (Tectona grandis L. f.) from Western Ghats of India as a tool to determine drought years. Emir. J. Food Agric. 2010, 22, 388–397. [Google Scholar] [CrossRef]
- Gaire, N.P.; Bhuju, D.R.; Koirala, M. Dendrochronological studies in Nepal: Current status and future prospects. FUUAST J. Boil. 2013, 3, 1–9. [Google Scholar]
- Thapa, U.K.; St. George, S.; Kharal, D.K.; Gaire, N.P. Tree growth across the Nepal Himalaya during the last four centuries. Prog. Phys. Geogr. 2017, 41, 478–495. [Google Scholar] [CrossRef]
- Sapkota, P.; Meilby, H. Modelling the growth of Shorea robusta using growth ring measurements. Banko Janakari 2009, 19, 25–32. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ainun, N.; Vacik, H. Anthropogenic disturbances and plant diversity of the Madhupur Sal forests (Shorea robusta C.F. Gaertn.) of Bangladesh. Int. J. Biodivers. Sci. Manag. 2009, 5, 162–173. [Google Scholar] [CrossRef]
- Webb, E.L.; Sah, R.N. Structure and diversity of natural and managed sal (Shorea robusta Gaertn. f.) forest in the Terai of Nepal. For. Ecol. Manag. 2003, 176, 337–353. [Google Scholar] [CrossRef]
- Stainton, J.D.A. Forests of Nepal; The Camelot Press Ltd. and Southampton: London, UK, 1972. [Google Scholar]
- Department of Forest Research and Survey (DFRS); State of Nepal’s Forests. Forest Resource Assessment (FRA) Nepal; Department of Forest Research and Survey (DFRS): Kathmandu, Nepal, 2015.
- Baral, S.; Vacik, H. What Governs Tree Harvesting in Community Forestry—Regulatory Instruments or Forest Bureaucrats’ Discretion? Forests 2018, 9, 649. [Google Scholar] [CrossRef]
- Tamrakar, P.R. Coppice management of Shorea robusta forests in Nepal. Banko Janakari 1994, 4, 176–179. [Google Scholar]
- Rautiainen, O.; Suoheimo, J. Natural regeneration potential and early development of Shorea robusta Gaertn.f. forest after regeneration felling in the Bhabar–Terai zone in Nepal. For. Ecol. Manag. 1997, 92, 243–251. [Google Scholar] [CrossRef]
- Sapkota, I.P.; Tigabu, M.; Odén, P.C. Spatial distribution, advanced regeneration and stand structure of Nepalese Sal (Shorea robusta) forests subject to disturbances of different intensities. For. Ecol. Manag. 2009, 257, 1966–1975. [Google Scholar] [CrossRef]
- Rautiainen, O. Spatial yield model for Shorea robusta in Nepal. For. Ecol. Manag. 1999, 119, 151–162. [Google Scholar] [CrossRef]
- Miehe, S.; Miehe, G.; Miehe, S.; BöHner, J.; BäUmler, R.; Ghimire, S.K.; Subedi, M. Vegetation ecology. In Nepal: An Introduction to the Natural History, Ecology and Human Environment in the Himalayas—A Companion to the Flora of Nepal, 1st ed.; Miehe, G., Pendry, C.A., Eds.; The Royal Botanical Garden: Edinburgh, UK, 2015; Chapter 16; pp. 385–472. [Google Scholar]
- IoF; UoC. Community-Based Forestry in Nepal Himalaya Project (ComForM) Is the Long-Term Research Project Implemented by the Institute of Forestry; Pokhara and Danish Centre for Forest, Landscape and Planning, University of Copenhagen: Copenhagen, Denmark, 2011. [Google Scholar]
- DHM. Climatological Records of Nepal; Department of Irrigation, Hydrology and Meteorology, Government of Nepal: Kathmandu, Nepal, 2017.
- Rinn, F. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications; Version 0.55 User Reference; Rinntech: Heidelberg, Germany, 2003; Available online: http://www.rimatech.comSalzer (accessed on 22 January 2009).
- Holmes, R.L. Computer assisted quality control in tree ring dating and measuring. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Grissino-Mayer, H.C. Evaluating crossdating accuracy: A manual and tutorial for computer program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Cook, E.R.; Kairiukstis, A. (Eds.) Methods of Dendrochronology: Applications in the Environmental Sciences; Kluwer Academic Press: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Melvin, T.M.; Briffa, K.R. CRUST: Software for the implementation of Regional Chronology Standardisation: Part 2. Further RCS options and recommendations. Dendrochronologia 2014, 32, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Melvin, T.M.; Briffa, K.R. A signal–free approach to dendroclimatic standardization. Dendrochronologia 2008, 26, 71–86. [Google Scholar] [CrossRef]
- Salzer, M.W.; Hughes, M.K.; Bunnb, A.G.; Kipfmueller, K.F. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc. Natl. Acad. Sci. USA 2009, 106, 20348–20353. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 14 February 2016).
- Zang, C.; Biondi, F. Dendroclimatic calibration in R: The boot res package for response and correlation function analysis. Dendrochronologia 2013, 31, 68–74. [Google Scholar] [CrossRef]
- Cutler, D.F.; Botha, C.E.J.; Stevenson, D.W. Plant Anatomy: An Applied Approach; Blackwell Publishing: London, UK, 2007; pp. 170–191. [Google Scholar]
- Gärtner, H.; Lucchinetti, S.; Schweingruber, F.H. New perspectives for wood anatomical analysis in dendrosciences: The GSL1-microtome. Dendrochronologia 2014, 32, 47–51. [Google Scholar] [CrossRef]
- IAWA Committee. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989, 10, 219–332. [Google Scholar]
- Baral, S.; Gautam, A.P.; Vacik, H. Ecological and economical sustainability assessment of community forest management in Nepal: A reality check. J. Sustain. For. 2018, 37, 820–841. [Google Scholar] [CrossRef]
- Rahman, M.M.; Nishat, A.; Rahman, G.M.M.; Ruprecht, H.; Vacik, H. Analysis of spatial diversity of sal (Shorea robusta Gaertn.f) forests using neighborhood-based measures. Community Ecol. 2008, 9, 193–199. [Google Scholar] [CrossRef]
- Singh, A. Growth Performance of Native Tropical Tree Species on a Coal Mine Spoil on Singrauli Coalfields, India. Int. J. Bioinform. Biomed. Eng. 2015, 1, 16–19. [Google Scholar]
- Ahmed, M.; Wahab, M.; Khan, N.; Siddiqui, M.F.; Khan, M.U.; Husain, S.T. Age and growth rates of some gymnosperms of Pakistan: A dendrochronological approach. Pak. J. Bot. 2009, 41, 849–860. [Google Scholar]
- Bhuju, D.R.; Carrer, M.; Gaire, N.P.; Soraruf, L.; Riondato, R.; Salerno, F.; Maharjan, S.R. Dendroecological study of high-altitude forest at Sagarmatha National Park, Nepal. In Contemporary Research in Sagarmatha (Mt. Everest) Region; Nepal Academy of Science and Technology: Lalitpur, Nepal, 2010; pp. 119–130. [Google Scholar]
- Chhetri, P.K.; Thapa, S. Tree Ring and Climate change in Langtang National Park, Central Nepal. Our Nat. 2010, 8, 139–143. [Google Scholar] [CrossRef]
- Bhuju, D.R.; Gaire, N.P. Plantation History and Growth of Old Pine Stands in Kathmandu Valley: A Dendrochronological Approach. FUUAST J. Boil. 2012, 2, 13–17. [Google Scholar]
- Gaire, N.P.; Koirala, M.; Bhuju, D.R.; Carrer, M. Site- and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia 2017, 41, 44–56. [Google Scholar] [CrossRef]
- Aryal, S.; Bhuju, D.R.; Kharal, D.K.; Gaire, N.P.; Dyola, N. Climatic upshot using growth pattern of Pinus roxburghii from western Nepal. Pak. J. Bot. 2018, 50, 579–588. [Google Scholar]
- Gaire, N.P.; Bhuju, D.R.; Koirala, M.; Shah, S.K.; Carrer, M.; Timilsena, R. Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840. Dendrochronologia 2017, 42, 21–30. [Google Scholar] [CrossRef]
- Liang, E.Y.; Dawadi, B.; Pederson, N.; Eckstein, D. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 2014, 95, 2453–2465. [Google Scholar] [CrossRef] [Green Version]
- Thapa, U.K.; Shah, S.K.; Gaire, N.P.; Bhuju, D.R. Spring temperatures in the far western Nepal Himalaya since AD 1640 reconstructed from Picea smithiana tree-ring widths. Clim. Dyn. 2015, 45, 2069–2081. [Google Scholar] [CrossRef]
- Kharal, D.K.; Thapa, U.K.; St. George, S.; Meilby, H.; Rayamajhi, S.; Bhuju, D.R. Tree-climate relations along an elevational transect in Manang Valley, central Nepal. Dendrochronologia 2017, 41, 57–64. [Google Scholar] [CrossRef]
- Sano, M.; Furuta, F.; Kobayashi, O.; Sweda, T. Temperature variations since the mid-18th century for western Nepal, as reconstructed from tree-ring width and density of Abies Spectabilis. Dendrochronologia 2005, 23, 83–92. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Eckstein, D.; Shah, S.K.; Chaudhary, V. Analyses of climatic changes around Perambikulum, South India, based on early wood mean vessel area of teak. Curr. Sci. 2007, 93, 1159–1164. [Google Scholar]
- Shah, S.K.; Holmes, A.; Chaudhary, V. Reconstruction of June–September precipitation based on tree-ring data of teak (Tectona grandis L.) from Hoshangabad, Madhya Pradesh, India. Dendrochronologia 2007, 25, 57–64. [Google Scholar] [CrossRef]
- Borgaonkar, H.P.; Pumijumnong, N.; Buckley, B.M.; Taesumrith, O.; Chutiwat, S. Tree-ring analysis of teak (Tectona grandis) at Mae Na, Thailand and its climatic implications. Palaeobotanist 2001, 50, 27–34. [Google Scholar]
- Kumar, S.; Chopra, N. Effect of Climate Change on Sal (Shorea robusta Gaertn. f.) Forest of Kumaun Himalaya American. J. Environ. Sci. 2018, 14, 185–194. [Google Scholar] [CrossRef]
- Spiecker, H.; Mielikaeinen, K.; Kohl, M.; Skovsgaard, P. (Eds.) Growth Trends in European Forests: Studies from 12 Countries; European Forest Institute Research Report No. 5; Springer: Berlin, Germany, 1996. [Google Scholar]
- Johnson, S.E.; Abrams, M.D. Basal area increment trends across age classes for two long-lived tree species in the eastern U.S. In TRACE-Tree Rings in Archaeology, Climatology and Ecology; Kaczka, R., Malik, I., Owczarek, P., Gärtner, H., Helle, G., Heinrich, I., Eds.; Scientific Technical Report STR 09/03; GFZ Potsdam: Potsdam, Germany, 2009; Volume 7, p. 226. [Google Scholar]
- LeBlanc, D.C.; Nicholas, N.S.; Zedaker, S.M. Prevalence of individual-tree growth decline in red spruce populations of the southern Appalachian Mountains. Can. J. Res. 1992, 22, 905–914. [Google Scholar] [CrossRef]
- Duchesne, L.; Ouimet, R.; Morneau, C. Assessment of sugar maple health based on basal area growth pattern. Can. J. Res. 2003, 33, 2074–2080. [Google Scholar] [CrossRef]
- Weiner, J.; Thomas, S.C. The nature of tree growth and the age-related decline in forest productivity. Oikos 2001, 94, 374–376. [Google Scholar] [CrossRef]
- Panthi, S. Long-Term Tree Growths and Their Responses to Global Changes Along Elevation Gradients in the Central Himalaya and Hengduan Mountains. Ph.D. Thesis, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Pallardy, S.G. Physiology of Woody Plants; Elesvier Publications: Amsterdam, The Netherlands, 2008. [Google Scholar]
- de Tarso Alvim, P. Tree growth periodicity in tropical climates. In The Formation of Wood in Forest Trees; Zimmermann, M.H., Ed.; Academic Press: New York, NY, USA; London, UK, 1964; pp. 479–495. [Google Scholar]
- Suzuki, M.; Noshiro, S.; Takahasi, A.; Yoda, K.; Joshi, L. Wood structure of Himalayan plants-II. In The Himalayan Plants; Ohba, H., Malla, S.B., Eds.; University of Tokyo Press: Tokyo, Japan, 1991; Volume 2, pp. 17–65, Pl.5-62. [Google Scholar]
- Schweingruber, F.H. Wood Structure and Environment; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Hacke, U.G.; Sperry, J.S. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 2001, 4, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Swaine, M.D.; Whitemore, T.C. On the definition of ecological species groups in tropical forests. Vegetatio 1988, 75, 81–86. [Google Scholar] [CrossRef]
Year | Basal Area (square meter/ha) | Period | Removal m3/ha/year |
---|---|---|---|
2005 | 20.3 | I (2005–2010) | 3.26 |
2010 | 28.9 | II (2010–2013) | 3.65 |
2013 | 33.2 | III (2013–2016) | 0.13 |
2016 | 37.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baral, S.; Gaire, N.P.; Aryal, S.; Pandey, M.; Rayamajhi, S.; Vacik, H. Growth Ring Measurements of Shorea robusta Reveal Responses to Climatic Variation. Forests 2019, 10, 466. https://doi.org/10.3390/f10060466
Baral S, Gaire NP, Aryal S, Pandey M, Rayamajhi S, Vacik H. Growth Ring Measurements of Shorea robusta Reveal Responses to Climatic Variation. Forests. 2019; 10(6):466. https://doi.org/10.3390/f10060466
Chicago/Turabian StyleBaral, Sony, Narayan Prasad Gaire, Sugam Aryal, Mohan Pandey, Santosh Rayamajhi, and Harald Vacik. 2019. "Growth Ring Measurements of Shorea robusta Reveal Responses to Climatic Variation" Forests 10, no. 6: 466. https://doi.org/10.3390/f10060466
APA StyleBaral, S., Gaire, N. P., Aryal, S., Pandey, M., Rayamajhi, S., & Vacik, H. (2019). Growth Ring Measurements of Shorea robusta Reveal Responses to Climatic Variation. Forests, 10(6), 466. https://doi.org/10.3390/f10060466