Quantifying Impacts of National-Scale Afforestation on Carbon Budgets in South Korea from 1961 to 2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spatial Data for South Korean Forests
2.1.1. Study Area
2.1.2. National Forest Inventory Data and Forest Cover Map
2.2. Investment in the National Forestation Program
2.2.1. Establishing a Time Series of Forest Stock Maps
2.2.2. Preparation of Inventory Data on Past and Present Forest Status
2.3. Validation
3. Results and Discussion
3.1. Stem Volume, C stocks, and Annual C Sequestration
3.2. Model Validation
3.3. Uncertainty and Implications for Forest Management
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Staudt, P.B.; Tessaro, I.C.; Marczak, L.D.F.; Soares, R.D.P.; Cardozo, N.S.M. A new method for predicting sorption isotherms at different temperatures: Extension to the GAB model. J. Food Eng. 2013, 118, 247–255. [Google Scholar] [CrossRef]
- Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The biodiversity of species and their rates of extinction, distribution, and protection. Science 2014, 344, 1246752. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, N.H.; Chaturvedi, R.K.; Murthy, I.K. Forest conservation, afforestation and reforestation in India: Implications for forest carbon stocks. Curr. Sci. 2008, 95, 216–222. [Google Scholar]
- Zhang, K.; Li, X.; Zhou, W.; Zhang, D. Land resource degradation in China: Analysis of status, trends and strategy. Int. J. Sustain. Dev. World Ecol. 2006, 13, 397–408. [Google Scholar] [CrossRef]
- Trotter, C.; Tate, K.; Scott, N.; Townsend, J.; Wilde, H.; Lambie, S.; Marden, M.; Pinkney, T. Afforestation/reforestation of New Zealand marginal pasture lands by indigenous shrublands: The potential for Kyoto forest sinks. Ann. For. Sci. 2005, 62, 865–871. [Google Scholar] [CrossRef]
- Juhola, S. Mainstreaming climate change adaptation: The case of multi-level governance in Finland. In Developing Adaptation Policy and Practice in Europe: Multi-Level Governance of Climate Change; Springer: Dordrecht, The Netherlands, 2010; pp. 149–187. [Google Scholar]
- Food Statistics Pocketbook; Department for Environment, Food and Rural Affairs (DEFRA): London, UK, 2013.
- Kim, M.; Lee, W.K.; Kurz, W.A.; Kwak, D.A.; Morken, S.; Smyth, C.E.; Ryu, D. Estimating carbon dynamics in forest carbon pools under IPCC standards in South Korea using CBM-CFS3. IForest 2017, 10, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, H.M. Village Forestry Development in the Republic of Korea; A Case Study; FAO: Rome, Italy, 1982. [Google Scholar]
- Korean Forest Service. Statistical Yearbook of Forestry 2017; Korean Forest Service: Daejeon, Korea, 2017.
- Kim, J.H.; Youn, R.H.; Lee, H.J.; Woo, S.; Kim, H.T.; Park, J.J.; Kim, C.R.; Dong, K. Valuation of Nonmarket Forest Resources. J. Korean Inst. For. Recreat. 2012, 46, 9–18. [Google Scholar]
- Park, H.; Lee, J.Y.; Song, M. Scientific activities responsible for successful forest greening in Korea Scienti fi c activities responsible for successful forest greening in Korea. For. Sci. Technol. 2017, 13, 1–8. [Google Scholar]
- Kim, G.S.; Lim, C.H.; Kim, S.J.; Lee, J.; Son, Y.; Lee, W.K. Effect of national-scale afforestation on forest water supply and soil loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef]
- Choi, S.D.; Chang, Y.S. Factors Affecting the Distribution of the Rate of Carbon Uptake by Forests in South Korea. Environ. Sci. Technol. 2004, 38, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Korean Forest Service. The 6th National Forest Master Plan 2018–2037; Korean Forest Service: Daejeon, Korea, 2018.
- Walther, G.R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Engler, R.; Randin, C.F.; Thuiller, W.; Dullinger, S.; Zimmermann, N.E.; Araújo, M.B.; Pearman, P.B.; Le Lay, G.; Piedallu, C.; Albert, C.H.; et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Chang. Biol. 2011, 17, 2330–2341. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Kwak, D.A.; Cui, G.; Lee, W.K.; Kwak, H.; Ito, A.; Son, Y.; Jeon, S. Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecol. Res. 2013, 28, 1045–1059. [Google Scholar] [CrossRef]
- Li, X.; Yi, M.J.; Son, Y.; Jin, G.; Han, S.S. Forest biomass carbon accumulation in Korea from 1954 to 2007. Scand. J. For. Res. 2010, 25, 554–563. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, T.K.; Han, S.; Kim, S.; Yi, M.J.; Park, G.S.; Kim, C.; Son, Y.M.; Kim, R.; Son, Y. Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 2014, 11, 4637–4650. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Guo, Z.; Hu, H.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef]
- Dowon, L.; Hyung, Y.K.; Dongseon, L.; Sinkyu, K.; Hojeong, K.; Hwan, L.J.; Hak, L.K. Changes in annual CO2 fluxes estimated from inventory data in South Korea. Sci. China Ser. C-Life Sci. 2002, 45, 87–96. [Google Scholar]
- Lindroth, A.; Grelle, A.; More, A. Long-term measurements of boreal forest carbon balance. Glob. Biogeochem. Cycles 1998, 4, 443–450. [Google Scholar]
- Charney, N.D.; Babst, F.; Poulter, B.; Record, S.; Trouet, V.M.; Frank, D.; Enquist, B.J.; Evans, M.E.K. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 2016, 19, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.A.; Kong, W.S.; Park, S.U.; Lee, J.H.; Kim, J.; Jung, H. Sensitivity of Korean fir (Abies koreana Wils.), a threatened climate relict species, to increasing temperature at an island subalpine area. Ecol. Modell. 2017, 353, 5–16. [Google Scholar] [CrossRef]
- Park, B.; Song, K. Analysis of Climate Change Sensitivity of Forest Ecosystem using MODIS Imagery and Climate Information. J. Korean Assoc. Geogr. Inf. Stud. 2018, 21, 1–18. [Google Scholar]
- Yun, J.I.; Choi, J.Y.; Ahn, J.H. Seasonal trend of elevation effect on daily air temperature in Korea. Korean J. Agric. For. Meteorol. 2001, 3, 96–104. [Google Scholar]
- National Institute of Forest Science (NIFoS). The 5th National Forest Inventory Report; National Institute of Forest Science: Seoul, Korea, 2013.
- Korea Forest Service. Basic Guidelines for Forest Spatial Information System Development Project—1:5000 Production Expanded Forest Type Map; Korea Forest Service: Daejeon, Korea, 2009.
- Korea Forest Service. Table of Tree Volume/Mass and Yield Table; Korea Forest Service: Daejeon, Korea, 2009.
- Kim, M.; Lee, W.K.; Choi, G.M.; Song, C.; Lim, C.H.; Moon, J.; Piao, D.; Kraxner, F.; Shividenko, A.; Forsell, N. Modeling stand-level mortality based on maximum stem number and seasonal temperature. For. Ecol. Manag. 2017, 386, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Piao, D.; Kim, M.; Choi, G.; Moon, J.; Yu, H.; Lee, W.; Wang, S.; Jeon, S.W.; Son, Y.; Son, Y.; et al. Development of an Integrated DBH Estimation Model Based on Stand and Climatic Conditions. Forests 2018, 9, 155. [Google Scholar] [CrossRef]
- Kim, M.; Lee, W.K.; Son, Y.; Yoo, S.; Choi, G.M.; Chung, D.J. Assessing the impacts of topographic and climatic factors on radial growth of major forest forming tree species of South Korea. For. Ecol. Manag. 2017, 404, 269–279. [Google Scholar] [CrossRef] [Green Version]
- NIFoS. Carbon Emission Factors and Biomass Allometric Equations by Species in Korea; National Institute of Forest Science: Seoul, Korea, 2014.
- Nam, K.; Lee, W.K.; Kim, M.; Kwak, D.A.; Byun, W.H.; Yu, H.; Kwak, H.; Kwon, T.; Sung, J.; Chung, D.J.; et al. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea. Sci. China Life Sci. 2015, 58, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Jingyun, F.; Anping, C.; Changhui, P.; Shuqing, Z.; Longjun, C. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar]
- Bae, J.S.; Lee, K.H.; Lee, Y.G.; Youn, H.J.; Park, C.R.; Choi, H.T.; Kim, T.G. Lessons Learned from the Republic of Korea’s National Reforestation Programme; Korea Forest Service: Daejeon, Korea, 2014.
- Jung, H.S.; Choi, Y.; Oh, J.H.; Lim, G.H. Recent trends in temperature and precipitation over South Korea. Int. J. Climatol. 2002, 22, 1327–1337. [Google Scholar] [CrossRef]
- Chung, Y.S.; Yoon, M.B.; Kim, H.S. On climate variations and changes observed in South Korea. Clim. Chang. 2004, 66, 151–161. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, H.; Jang, H.; Kim, T. Future Changes in Drought Characteristics under Extreme Climate Change over South Korea. Adv. Meteorol. 2016, 2016, 9164265. [Google Scholar] [CrossRef]
- Kyoung, M.; Kwak, J.; Kim, D.; Kim, H.; Singh, V.P. Drought analysis based on SPI and SAD curve for the korean peninsula considering climate change. In Climate Change-Geophysical Foundations and Ecological Effects; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Korea Meteorological Administration. Annual Climate Report 2001; Korea Meteorological Administration: Seoul, Korea, 2001.
- Park, J.S.; Kim, K.T.; Choi, Y.S. Application of vegetation condition index and standardized vegetation index for assessment of spring drought in South Korea. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 6–11 July 2008; Volume 3, pp. 774–777. [Google Scholar]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; Mcdowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.T.; et al. Forest Ecology and Management A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Lloyd, A.H.; Bunn, A.G. Responses of the circumpolar boreal forest to 20th century climate variability. Environ. Res. Lett. 2007, 2, 045013. [Google Scholar] [CrossRef]
- Schneider, R.R.; Hamann, A.; Farr, D.; Wang, X.; Boutin, S. Potential effects of climate change on ecosystem distribution in Alberta. Can. J. For. Res. 2009, 39, 1001–1010. [Google Scholar] [CrossRef] [Green Version]
- NIFoS. Study on the Basis of Forest Carbon Accounting in Korea; National Institute of Forest Science: Seoul, Korea, 2010.
- Wirth, C.; Schumacher, J.; Schulze, E.D. Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 2004, 24, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Teobaldelli, M.; Somogyi, Z.; Migliavacca, M.; Usoltsev, V.A. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For. Ecol. Manag. 2009, 257, 1004–1013. [Google Scholar] [CrossRef]
- Bellassen, V.; Viovy, N.; Luyssaert, S.; Le Maire, G.; Schelhaas, M.J.; Ciais, P. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob. Chang. Biol. 2011, 17, 3274–3292. [Google Scholar] [CrossRef]
- Luyssaert, S.; Ciais, P.; Piao, S.L.; Schulze, E.D.; Jung, M.; Zaehle, S.; Schelhaas, M.J.; Reichstein, M.; Churkina, G.; Papale, D.; et al. The European carbon balance. Part 3: Forests. Glob. Chang. Biol. 2010, 16, 1429–1450. [Google Scholar] [CrossRef]
- Fischer, R.; Aas, W.; de Vries, W.; Clarke, N.; Cudlin, P.; Leaver, D.; Lundin, L.; Matteucci, G.; Matyssek, R.; Mikkelsen, T.N.; et al. Towards a transnational system of supersites for forest monitoring and research in Europe—An overview on present state and future recommendations. IForest 2011, 4, 167–171. [Google Scholar] [CrossRef]
- Wiechmann, M.L.; Hurteau, M.D.; North, M.P.; Koch, G.W.; Jerabkova, L. The carbon balance of reducing wildfire risk and restoring process: An analysis of 10-year post-treatment carbon dynamics in a mixed-conifer forest. Clim. Chang. 2015, 132, 709–719. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag. 2017, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustavsson, L.; Pingoud, K.; Sathre, R. Carbon dioxide balance of wood substitution: Comparing concrete- and wood-framed buildings. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 667–691. [Google Scholar] [CrossRef]
- Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.A.; Sathre, R.; Le Truong, N.; Wikberg, P.E. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew. Sustain. Energy Rev. 2017, 67, 612–624. [Google Scholar] [CrossRef]
Tree Species | Stem Biomass Equation | Carbon Equation | ||||
---|---|---|---|---|---|---|
a | b | c | Basic Wood Density | Biomass Expansion Factor | Root/Shoot Ratio | |
Pinus densiflora | 0.034 | 1.734 | 1.025 | 0.472 | 1.413 | 0.254 |
Pinus koraiensis | 0.046 | 1.732 | 0.896 | 0.408 | 1.812 | 0.283 |
Larix kaempferi | 0.005 | 2.458 | 0.904 | 0.453 | 1.335 | 0.291 |
Quercus variabilis | 0.053 | 1.810 | 0.881 | 0.721 | 1.338 | 0.324 |
Quercus mongolica | 0.098 | 1.406 | 1.135 | 0.663 | 1.603 | 0.388 |
Factors | Spatial Level (Std. dev.) | ||
---|---|---|---|
Plot | Watershed Boundary | Administrative Boundary | |
No. of sample | 3892 (n/a) | 102 (n/a) | 17 (n/a) |
Mean area (ha) | 0.24 (n/a ) | 93,514 (61,244) | 590,374 (620,349) |
Mean stem volume (m3 ha−1) of fifth NFI and sixth NFI | 125.8 (74.8), 149.9 (84.7) | 118.3 (25.8), 142.3 (28.3) | 124.9 (15.7), 149.1 (18.7) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kraxner, F.; Son, Y.; Jeon, S.W.; Shvidenko, A.; Schepaschenko, D.; Ham, B.-Y.; Lim, C.-H.; Song, C.; Hong, M.; et al. Quantifying Impacts of National-Scale Afforestation on Carbon Budgets in South Korea from 1961 to 2014. Forests 2019, 10, 579. https://doi.org/10.3390/f10070579
Kim M, Kraxner F, Son Y, Jeon SW, Shvidenko A, Schepaschenko D, Ham B-Y, Lim C-H, Song C, Hong M, et al. Quantifying Impacts of National-Scale Afforestation on Carbon Budgets in South Korea from 1961 to 2014. Forests. 2019; 10(7):579. https://doi.org/10.3390/f10070579
Chicago/Turabian StyleKim, Moonil, Florian Kraxner, Yowhan Son, Seong Woo Jeon, Anatoly Shvidenko, Dmitry Schepaschenko, Bo-Young Ham, Chul-Hee Lim, Cholho Song, Mina Hong, and et al. 2019. "Quantifying Impacts of National-Scale Afforestation on Carbon Budgets in South Korea from 1961 to 2014" Forests 10, no. 7: 579. https://doi.org/10.3390/f10070579
APA StyleKim, M., Kraxner, F., Son, Y., Jeon, S. W., Shvidenko, A., Schepaschenko, D., Ham, B.-Y., Lim, C.-H., Song, C., Hong, M., & Lee, W.-K. (2019). Quantifying Impacts of National-Scale Afforestation on Carbon Budgets in South Korea from 1961 to 2014. Forests, 10(7), 579. https://doi.org/10.3390/f10070579