The Characteristics of Soil C, N, and P Stoichiometric Ratios as Affected by Geological Background in a Karst Graben Area, Southwest China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Methods
2.4. Data Analysis
3. Results
3.1. General Patterns of Soil C, N, and P in the Karst Graben Basin
3.2. Soil Nutrient Concentrations and their Stoichiometry under Different Rocky Desertification
3.3. Correlations among Geochemical Variables and C, N, and P Stoichiometry
4. Discussion
4.1. Spatial Pattern of Eco-Stoichiometric Characteristics of C, N, and P and Analysis of Influencing Factors
4.2. Soil Ca and pH Controls on Soil C, N, and P Stoichiometry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, X.; Deng, X.; Xiang, W.; Lei, P.; Ouyang, S.; Wen, H.; Chen, L. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China. Biogeosciences 2018, 15, 2991–3002. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Yuan, D.X. Rock desertification in the subtropical Karst of South China. Z. Geomorphol. 1997, 108, 81–90. [Google Scholar]
- Li, Q.; Pu, J.B.; Huang, N.; Du, H.M.; Qi, X.K.; Wang, L.; Yang, H. A research approach for ecological, environmental and geological differentiation of rocky desertification and its driving mechanism in karst graben basin. Adv. Earth Sci. 2017, 32, 899–907. (In Chinese) [Google Scholar]
- Cao, J.H.; Deng, Y.; Yang, H.; Pu, J.B.; Zhu, T.B.; Lan, F.N.; Huang, F.; Liang, J.H. Rocky desertification evolution, treatment technology and demonstration in Karst faulted basins, Southwest China. Acta Ecol. Sin. 2016, 36, 7103–7108. (In Chinese) [Google Scholar]
- Müller, M.; Oelmann, Y.; Schickhoff, U.; Böhner, J.; Scholten, T. Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma 2017, 291, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Li, F.; Xie, Y.H.; Deng, Z.M.; Chen, X.S. Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake. Phys. Chem. Earth 2018, 103, 28–34. [Google Scholar] [CrossRef]
- Mooney, H.A.; Vitousek, P.M.; Matson, P.A. Exchange of Materials Between Terrestrial Ecosystems and the Atmosphere. Science 1987, 238, 926. [Google Scholar] [CrossRef]
- Mooshammer, M.; Hofhansl, F.; Frank, A.H.; Wanek, W.; Hämmerle, I.; Leitner, S.; Schnecker, J.; Wild, B.; Watzka, M.; Keiblinger, K.M.; et al. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Sci. Adv. 2017, 3, e1602781. [Google Scholar] [CrossRef]
- Finzi, A.C.; Austin, A.T.; Cleland, E.E.; Frey, S.D.; Houlton, B.Z.; Wallenstein, M.D. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 2011, 9, 61–67. [Google Scholar] [CrossRef]
- Jacques Agra Bezerra da Silva, Y.; Williams Araújo do Nascimento, C.; Jacques Agra Bezerra da Silva, Y.; Miranda Biondi, C.; Cordeiro Atanázio Cruz Silva, C.M. Rare Earth Element Concentrations in Brazilian Benchmark Soils. Rev. Bras. Ciênc. Solo. 2016, 40, 1–13. [Google Scholar]
- Wang, S.Q.; Yu, G.R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecol. Sin. 2008, 28, 3937–3947. (In Chinese) [Google Scholar]
- Li, Y.B.; Shao, J.A.; Yang, H.; Bai, X.Y. The relations between land use and karst rocky desertification in a typical karst area, China. Environ. Geol. 2009, 57, 621–627. [Google Scholar] [CrossRef]
- Luo, G.J.; Li, Y.B.; Wang, S.J.; Cheng, A.Y.; Dan, W.L. Comparison of ecological significance of landscape diversity changes in karst mountains: A case study of 4 typical karst area in Guizhou Province. Acta Ecol. Sin. 2011, 31, 3882–3889. (In Chinese) [Google Scholar]
- Song, T.Q.; Peng, W.X.; Du, H.; Wang, K.L.; Zeng, F.P. Occurrence, spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China. Acta Ecol. Sin. 2014, 34, 5328–5341. (In Chinese) [Google Scholar]
- Sheng, M.Y.; Liu, Y.; Xiong, K.N. Response of soil physical-chemical properties to rocky desertification succession in South China Karst. Acta Ecol. Sin. 2013, 33, 6303–6313. (In Chinese) [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.J.; Liu, Y.S.; He, T.B.; Luo, H.B.; Long, J. Changes of soil quality in the process of karst rocky desertification and evaluation of impact on ecological environment. Acta Ecol. Sin. 2005, 25, 639–644. (In Chinese) [Google Scholar]
- Pang, D.; Wang, G.; Li, G.; Sun, Y.; Liu, Y.; Zhou, J. Ecological Stoichiometric Characteristics of Two Typical Plantations in the Karst Ecosystem of Southwestern China. Forests 2018, 9, 56. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Alfaro, M.R.; Nascimento, C.W.A.; Biondi, C.M.; Silva, Y.J.A.B.; Accioly, A.M.; Montero, A.; Ugarte, O.M.; Estevez, J. Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena 2018, 162, 317–324. [Google Scholar] [CrossRef]
- Li, G.P. Progress and propects in research of mountain meteorogy in China during the past 25 years. Adv. Meteorol. Sci. Technol. 2016, 6, 115–122. (In Chinese) [Google Scholar]
- Wang, S.N.; Pu, J.B.; Li, J.H.; Zhang, T.; Huo, W.J.; Yuan, D.X. Climatic chararacteristics under the influence of basin-mountain coupled topography and its influence on the ecological restoration of rocky desertification in a Mengzi karst graben basin, Southwest China. Carsol. Sin. 2019, 38, 50–59. (In Chinese) [Google Scholar]
- Tyler, G.L.; Olsson, T. Conditions related to solubility of rare and minor elements in forest soils. J. Plant Nutr. Soil Sci. 2002, 165, 594–601. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agricultural Chemistry Analysis; China Agricultural Publishing House: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Cleveland, C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Wei, F.S.; Chen, J.S.; Wu, Y.Y.; Zheng, C.J. Study on the background contents on elements of soils in China. Chin. J. Environ. Sci. 1991, 12, 12–19. [Google Scholar]
- Zhu, T.; Zeng, S.; Qin, H.; Zhou, K.; Yang, H.; Lan, F.; Huang, F.; Cao, J.; Müller, C. Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China. Soil Biol. Biochem. 2016, 97, 99–101. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, L.K.; Yu, S.; Cao, J.H. Effects of different land-uses on the features of water-stable aggregates in karst and clasolite areas in Maocun, Guilin. Carsol. Sin. 2012, 31, 265–271. (In Chinese) [Google Scholar]
- Hu, L.N.; Su, Y.R.; He, X.Y.; Li, Y.; Li, L.; Wang, Y.H.; Wu, J.S. The speciation and content of calcium in karst soils, and its effects on soil organic carbon in karst region of Southwest China. Sci. Agric. Sin. 2012, 45, 1946–1953. [Google Scholar]
- Cao, J.H.; Yuan, D.X.; Pan, G.X. Some soil features in karst ecosystem. Adv. Earth Sci. 2003, 18, 37–44. (In Chinese) [Google Scholar]
- Duan, Z.F.; Fu, W.L.; Zen, X.J.; Du, F.Z. Correlation between soil organic carbon and water-stable aggregate in karst area-A case study in Zhongliangshan karst valley, Chongqing. Carsol. Sin. 2009, 28, 75–79. (In Chinese) [Google Scholar]
- Yang, H.; Zhang, L.K.; Cao, J.H.; Yu, S. Comparison of mineralization and chemical structure of the soil organic carbon under different land uses in Maocun karst area, Guilin. Carsol. Sin. 2011, 30, 410–416. (In Chinese) [Google Scholar]
- Shen, Y.; Fu, W.L.; Lan, J.C.; Cheng, H.; Zhang, S.Q.; Wu, L.Z. Distribution characteristics of soil particulate organic carbon and mineral-associated organic carbon of different land use in karst mountain. Res. Soil Water Conserv. 2012, 19, 1–6. [Google Scholar]
- Chen, X.B.; He, X.Y.; Hu, Y.J.; Su, Y.R. Characteristics and mechanisms of soil organic carbon accumulation and stability in typical karst ecosystems. Res. Agric. Mod. 2018, 39, 907–915. (In Chinese) [Google Scholar]
- Yang, H.; Liang, Y.; Xu, J.M.; Cao, J.H. Research progress of the relationship between soil calcium and soil organic carbon in karst area. Guangxi Sci. 2018, 25, 505–514. (In Chinese) [Google Scholar]
- Yang, H.; Chen, J.R.; Liang, J.H.; Cao, J.H. Preliminary study on the relationship between soil organic carbon and pH value and calcium species in Yaji karst region, Giulin. Geol. Rev. 2017, 63, 1117–1126. (In Chinese) [Google Scholar]
- Yang, H.; Cao, J.H.; Sun, L.; Luan, H.N.; Hou, Y.L. Fractions and distribution of inorganic phosphorus in different land use types of karst area. J. Soil Water Conserv. 2010, 24, 135–140. (In Chinese) [Google Scholar]
- Wen, J.; Ji, H.; Sun, N.; Tao, H.; Du, B.; Hui, D.; Liu, C. Imbalanced plant stoichiometry at contrasting geologic-derived phosphorus sites in subtropics: The role of microelements and plant functional group. Plant Soil 2018, 430, 113–125. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, T.B.; Wang, X.H.; Pu, J.B.; Li, J.H.; Zhang, T.; Cao, J.H. Soil element contents of typical small watershed in the plateau area of karst fault basin, Yunnan. Ecol. Environ. Sci. 2018, 27, 859–865. (In Chinese) [Google Scholar]
- Sheng, M.Y.; Xiong, K.N.; Cui, G.Y.; Liu, Y. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou, China. Acta Ecol. Sin. 2015, 35, 434–448. (In Chinese) [Google Scholar]
- Bárcenas-Moreno, G.; Rousk, J.; Bååth, E. Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments. Soil Biol. Biochem. 2011, 43, 1023–1033. [Google Scholar] [CrossRef]
- Grabovich, M.Y.D.G.; Churikova, V.V.; Churikov, S.N.; Korovina, T.I. Mechanisms of synthesis and utilization of oxalate inclusions in the colorless sulfur bacterium Macromonas bipunctata. Mikrobiology 1995, 64, 630–636. [Google Scholar]
- Silver, W.L.; Miya, R.K. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 2001, 129, 407–419. [Google Scholar] [CrossRef]
Location | Latitude and Longitude | Altitude (m) | Rocky Desertification and Vegetation |
---|---|---|---|
Basin | 103°23′47″E, 23°28′22″N | 1363 | LRD: Eucalyptus forest with short planting years and single community structure. The rock bareness rate was ~35%. |
MRD: Herbs, dominated by Miscanthus. The rock bareness rate was ~55%. | |||
SRD: Herbs, herb of Spanishneedles (Bidens bipinnata Linn.) and Canadian fleabane (Conyza canadensis (Linn.) Cronq.) was dominant specie. The rock bareness rate was >70%. | |||
Slope | 103°26′13″E, 23°27′43″N | 1846 | LRD: Artificially planted cypress forests, with high canopy density. The rock bareness rate was ~30%. |
MRD: Shrub, domained by Purpus Priver (Ligustrum quihoui Carr.) and Euphorbiae Pekinensis Radix (Euphorbia pekinensis Rupr). The rock bareness rate was ~50% | |||
SRD: Ferns are the main species. The rock bareness rate was >70%. | |||
Plateau | 103°27′09″E, 23°27′08″N | 2086 | LRD: Forest, the main vegetation types are Ligustrum quihoui Carr. and Chinese mugwort (Artemisia argyi H. Lév.) and Vaniot. The rock bareness rate was ~30%. |
MRD: the main vegetation types are Miscanthus. The rock bareness rate was ~50%. | |||
SRD: Herbs, domained by Miscanthus with a small amount of Conyza canadensis (Linn.) Cronq. The rock bareness rate was >70%. |
Landform | C:N | C:P | N:P | C:AvP | N:AvP |
---|---|---|---|---|---|
Basin | 13.4 ± 3.5 a | 65.8 ± 18.6 a | 5.0 ± 1.3 a | 42,429 ± 28,020 a | 3292 ± 2181 a |
Slope | 15.4 ± 3.2 b | 116.0 ± 26.2 b | 7.8 ± 2.6 b | 81,067 ± 36,628 b | 5600 ± 3079 b |
Plateau | 13.2 ± 1.7 a | 96.3 ± 39.9 b | 7.2 ± 2.5 b | 46,285 ± 37,982 a | 3399 ± 2589 a |
Average | 13.6 ± 2.6 | 92.6 ± 37.3 | 6.8 ± 2.5 | 51,516 ± 37,650 | 3762 ± 2682 |
China [27] | 14.4 ± 0.4 | 136 ± 11 | 9.3 ± 0.7 | 15,810 ± 1832 | 1114 ± 115 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhang, P.; Zhu, T.; Li, Q.; Cao, J. The Characteristics of Soil C, N, and P Stoichiometric Ratios as Affected by Geological Background in a Karst Graben Area, Southwest China. Forests 2019, 10, 601. https://doi.org/10.3390/f10070601
Yang H, Zhang P, Zhu T, Li Q, Cao J. The Characteristics of Soil C, N, and P Stoichiometric Ratios as Affected by Geological Background in a Karst Graben Area, Southwest China. Forests. 2019; 10(7):601. https://doi.org/10.3390/f10070601
Chicago/Turabian StyleYang, Hui, Peng Zhang, Tongbin Zhu, Qiang Li, and Jianhua Cao. 2019. "The Characteristics of Soil C, N, and P Stoichiometric Ratios as Affected by Geological Background in a Karst Graben Area, Southwest China" Forests 10, no. 7: 601. https://doi.org/10.3390/f10070601
APA StyleYang, H., Zhang, P., Zhu, T., Li, Q., & Cao, J. (2019). The Characteristics of Soil C, N, and P Stoichiometric Ratios as Affected by Geological Background in a Karst Graben Area, Southwest China. Forests, 10(7), 601. https://doi.org/10.3390/f10070601