A Decade of Forest Engineering: Achievements and Future Directions
Abstract
:1. Introduction
2. Materials and Methods
3. Definitions
- Mechanics of Machines (design, improvements, attachments)
- Harvesting Systems (options, evaluation, costing)
- Operational Management (system design, time studies and evaluation concepts)
- Strategic, Tactical and Operational Harvest Planning
- Surveying (boundaries, roads, stands, buildings, etc.)
- Forest Roads/Infra-Structure Design (roads, bridges specifications, costs)
- Transportation (logistics, networks, optimization)
- Operational Impacts (stand damage, regeneration impacts)
- Value Recovery (wood quality, conversion, optimization)
- Forest Certification (SFI, FSC, ISO, etc.)
- Bio-energy (biomass production, storage, conversion)
- International Forestry (practices in other countries, comparisons)
- Forest watershed management (cumulative impacts, rivers, stream crossings)
- People/workforce management (safety, ergonomics, safety systems)
- Applications of new technologies (data capture integration)
4. Progress in Forest Engineering
4.1. Paradigm Shift View in Forest Engineering
4.2. Disciplinary Integration to Adapt to the Changing Needs and Views
5. Main Achievements and Future Directions
- -
- the ever-increasing mechanization, aimed at reducing direct human input and exposure
- -
- the growth of the bio-economy, with its demand for innovative bio-based products
- -
- the “Internet of things”, which prefigures a connected world, where large volumes of data are made available and exchanged within and between networks in real time.
5.1. Increased Mechanization
5.2. Biomass for the Bioeconomy
5.3. IT Technology and the Internet of Things
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wikipedia. List of Forestry Universities and Colleges. 2019. Available online: https://en.wikipedia.org/wiki/List_of_forestry_universities_and_colleges (accessed on 10 June 2019).
- Clawson, M. Forests for Whom and for What? RFF Press: New York, NY, USA, 2011; 174p. [Google Scholar] [CrossRef]
- Visser, R. What can forest engineering do for forestry in New Zealand? N. Z. J. For. 2007, 52, 4–5. [Google Scholar]
- Omics. Updated List of High Journal Impact Factor Forestry Journals. Available online: https://www.omicsonline.org/forestry-journals-conferences-list.php (accessed on 10 June 2019).
- Heinimann, R. Forest operations engineering and management: The ways behind and ahead of a scientific discipline. Croat. J. For. Eng. 2007, 28, 107–121. [Google Scholar]
- Stokes, B.; Ashmore, C.; Rawlins, C.; Sirois, D. Glossary of Terms Used in Timber Harvesting and Forest Engineering; Gen. Tech. Rep. SO-73; U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station: New Orleans, LA, USA, 1989; 33p.
- Wang, L.; Li, Y. Terminology of Forest Engineering and Timber Harvesting; Science Press: Beijing, China, 1991; 124p, ISBN 13 9787030294012. [Google Scholar]
- USDA. Glossary of forest Engineering Terms: Forest Operations Research. 2019. Available online: https://www.srs.fs.usda.gov/forestops/glossary/ (accessed on 29 April 2019).
- Study.com. 2019. Available online: https://study.com/directory/category/Engineering/Forest_Engineering.html (accessed on 10 June 2019).
- UC. University of Canterbury Website. 2019. Available online: https://www.canterbury.ac.nz/study/subjects/forest-engineering/ (accessed on 10 June 2019).
- IEA. International Engineering Alliance Website. 2019. Available online: http://www.ieagreements.org/accords/washington/ (accessed on 10 June 2019).
- Wartkotsch, W.; Engelbrecht, R.; Hacker, F. The South African Harvesting Code of Practice. 1987. Available online: http://www.fao.org/3/W3646E/w3646e0c.htm (accessed on 21 August 2019).
- Sundberg, U. The Emergence and Establishment of Forest Operations and Techniques as a Discipline in Forest Science; Communication of the Norwegian Forest Research Institute 41.8: Ås, Norway, 1988; 137p. [Google Scholar]
- Košir, B.; Magagnotti, N.; Spinelli, R. The role of work studies in forest engineering: Status and perspectives. Int. J. For. Eng. 2015, 26, 160–170. [Google Scholar] [CrossRef]
- Taylor, F.W. A piece-rate system being a step toward partial solution of the labor problem. Trans. Am. Soc. Mech. Eng. 1895, 16, 865–903. [Google Scholar]
- Taylor, F.W. The Principles of Scientific Management; Harper & Brothers: New York, NY, USA; London, UK, 1911; 77p. [Google Scholar]
- Nyland, C. Taylorism, John R. Commons, and the Hoxie Report. J. Econ. Issues 1996, 30, 985–1016. [Google Scholar] [CrossRef]
- Berg, S. Some aspects of LCA in the analysis of forestry operations. J. Clean Prod. 1997, 5, 211–217. [Google Scholar] [CrossRef]
- Schweier, J.; Magagnotti, N.; Labelle, E.; Athanassiadis, D. Sustainability impact assessment of forest operations: A review. Curr. For. Rep. 2019. [Google Scholar] [CrossRef]
- Lindner, M.; Suominen, T.; Palosuo, T.; Garcia-Gonzalo, J.; Verweij, P.; Zudin, S.; Päivinen, R. ToSIA—A tool for sustainability impact assessment of forest-wood-chains. Ecol. Model. 2010, 221, 2197–2205. [Google Scholar] [CrossRef]
- Kuehmaier, M.; Stampfer, K. Development of a multi-criteria decision support tool for energy wood supply management. Croat. J. For. Eng. 2012, 33, 181–198. [Google Scholar]
- Mousazadeh, H. A technical review on navigation systems of agricultural autonomous off-road vehicles. J. Terramech. 2013, 50, 211–232. [Google Scholar] [CrossRef]
- Olivera, A.; Visser, R. Using the harvester on-board computer capability to move towards precision forestry. N. Z. J. For. 2016, 60, 3–7. [Google Scholar] [CrossRef]
- Löfgren, B. Kinematic Control of Redundant Knuckle Boom with Automatic Pathfollowing Functions. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2009. [Google Scholar]
- Manner, J.; Gelin, O.; Mörk, A.; Englund, M. Forwarder crane’s boom tip control system and beginner-level operators. Silva Fennica 2017, 51, 1717. [Google Scholar] [CrossRef]
- Christensen, H. A Roadmap for US Robotics from Internet to Robotics, 2016th ed.; Christensen, H., Ed.; University of California: San Diego, CA, USA, 2016; Available online: http://jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf (accessed on 21 August 2019).
- Courteau, J. Robotics in Forest Harvesting Machines; FERIC: Pointe Claire, QC, Canada, 1989. [Google Scholar]
- Guimier, D.Y. Canadian Perspective on Mechanized Harvesting Development. In Mechanized Harvesting: The Future Is Here; Proceedings; Department of Forest Engineering, Oregon State University: Corvallis, OR, USA, 1991; pp. 1–6. [Google Scholar]
- Thor, M. Prospects and Challenges for Forest Harvesting technologies in Europe. In Proceedings of the 5th Forest Engineering Conference, Gerardmere, France, 23–25 September 2014; Available online: http://fec2014.fcba.fr/wp-content/uploads/sites/4/2014/11/k1_magnusthor_2014-09.pdf (accessed on 21 August 2019).
- Ringdahl, O.; Hellström, T.; Lindroos, O. Potentials of possible machine systems for directly loading logs in cut-to-length harvesting. Can. J. For. Res. 2012, 42, 970–985. [Google Scholar] [CrossRef] [Green Version]
- Hellström, T.; Lärkeryd, P.; Nordfjell, T.; Ringdahl, O. Autonomous Forest vehicles: Historic, envisioned, and state-of-the-art. Int. J. For. Eng. 2009, 20, 31–38. [Google Scholar] [CrossRef]
- Parker, R.; Bayne, K.; Clinton, P. Robotics in Forestry. N. Z. J. For. 2016, 60, 8–14. [Google Scholar]
- Ziesak, M.; Marques, A.F.; Rasinmaki, J.; Rosset, C.; Nummila, K.; Scholz, J. Advances in forestry control and automation systems in Europe—FOCUS: The concept idea in a multinational EU research project. In Proceedings of the 6th Precision Forestry Symposium: The Anchor of Your Value Chain; Ackerman, P., Gleasure, E., Ham, H., Eds.; Faculty of AgriSciences, Stellenbosch University: Stellenbosch, South Africa, 2014; p. 114. [Google Scholar]
- Visser, R. Next Generation Timber Harvesting Systems: Opportunities for Remote Controlled and Autonomous Machinery; Report Project No: PRC437-1718; Forest Wood and Products Australia (FWPA): Melbourne, Australia, 2018; ISBN 978-1-925213-78-2. [Google Scholar]
- Bergkvist, I.; Norden, B.; Lundstrom, H. The Beast, a remote controlled harvester. In Proceedings of the Sustainable Forest Operations—The Future is Now! 3rd Forest Engineering Conference, COFE 30th Annual Meeting, Mont-Tremblant, QC, Canada, 1–4 October 2007. [Google Scholar]
- McEwan, A. Forecasting the Technology Drivers of Harvesting Systems for Fast Growing Eucalyptus and Acacia Plantation Forestry. Ph.D. Thesis, University of Florence, Florence, Italy, 2017. [Google Scholar]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets (17 March 2017). MIT Department of Economics Working Paper No. 17-04. 2017. Available online: https://ssrn.com/abstract=2940245 (accessed on 21 August 2019).
- Nicholls, A.; Bren, L.; Humphreys, N. Harvester Productivity and Operator Fatigue: Working Extended Hours. Int. J. For. Eng. 2004, 15, 57–65. [Google Scholar] [CrossRef]
- Van Stralen, J.N.P.; Uslu, A.; Dalla Longa, F.; Panoutsou, C. The role of biomass in heat, electricity, and transport markets in the EU27 under different scenarios. Biofuel Bioprod. Bioref. 2013, 7, 147–163. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Energy. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks; Langholtz, M., Stokes, B., Eaton, L., Eds.; ORNL/TM-2016/160; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2016; 448p. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Anttila, P.; Eggers, J.; Lindner, M.; Asikainen, A. The realisable potential supply of woody biomass from forests in the European Union. For. Ecol. Manag. 2011, 261, 2007–2015. [Google Scholar] [CrossRef]
- Nicholls, D.L.; Halbrook, J.M.; Benedum, M.E.; Han, H.-S.; Lowell, E.C.; Becker, D.R.; Barbour, R.J. Socioeconomic constraints to biomass removal from forest lands for fire risk reduction in the western U.S. Forests 2018, 9, 264. [Google Scholar] [CrossRef]
- Koirala, A.; Kizha, A.R.; De Hoop, C.; Roth, B.; Han, H.S.; Hiesl, P.; Abbas, D.; Gautam, S.; Baral, S.; Bick, S.; et al. Annotated bibliography of the global literature on the secondary transportation of raw and comminuted forest products (2000–2015). Forests 2018, 9, 415. [Google Scholar] [CrossRef]
- Bisson, J.; Han, S.K.; Han, S.H. Evaluating the system logistics of a biomass recovery operation in northern California. For. Prod. J. 2016, 66, 88–96. [Google Scholar] [CrossRef]
- Ghaffariyan, M.; Brown, M.; Acuna, M.; Sessions, J.; Gallagher, T.; Kühmaier, M.; Spinelli, R.; Visser, R.; Devlin, G.; Eliasson, L.; et al. An international review of the most productive and cost effective forest biomass recovery technologies and supply chains. Renew. Sustain. Energy Rev. 2017, 74, 145–158. [Google Scholar] [CrossRef]
- Montgomery, T.; Han, H.S.; Kizhakkepurakkal, A. A GIS-based method for locating and planning centralized biomass grinding operations. Biomass Bioenergy 2016, 85, 262–270. [Google Scholar] [CrossRef]
- Han, S.K.; Han, H.S.; Bisson, J. Effects of grate size on grinding productivity, fuel consumption, and particle size distribution. For. Prod. J. 2015, 65, 209–216. [Google Scholar] [CrossRef]
- Spinelli, R.; Pari, L.; Magagnotti, N. New biomass products, small-scale plants and vertical integration as opportunities for rural development. Biomass Bioenergy 2018, 115, 244–252. [Google Scholar] [CrossRef]
- Han, H.S.; Jacobson, A.; Bilek, E.M.; Sessions, J. Waste to Wisdom: Utilizing forest residues for the production of bioenergy and biobased products. Appl. Eng. Agric. 2018, 34, 5–10. [Google Scholar] [CrossRef]
- Severy, M.; Chamberlin, C.; Eggink, A.; Jacobson, A. Demonstration of a pilot-scale plant for torrefaction and briquetting. Appl. Eng. Agric. 2018, 34, 85–98. [Google Scholar] [CrossRef]
- Spinelli, R.; Cavallo, E.; Facello, A. A new comminution device for high-quality chip production. Fuel Proc. Tech. 2012, 99, 69–74. [Google Scholar] [CrossRef]
- Bisson, J.; Han, H.S. Quality of feedstock produced from sorted forest residues. Am. J. Biomass Bioenergy 2016, 5, 81–97. [Google Scholar] [CrossRef]
- Lee, E.; Bisson, J.; Han, H.S. Evaluating the production cost and quality of feedstock produced by a sawdust machine. Biomass Bioenergy 2017, 104, 53–60. [Google Scholar] [CrossRef]
- Kizha, A.R.; Han, H.S.; Paulson, J.; Koirala, A. Strategies for reducing moisture content in forest residues at the harvest site. Appl. Eng. Agric. 2018, 34, 25–33. [Google Scholar] [CrossRef]
- Kizha, A.; Han, H.S. Processing and sorting forest residues: Cost, productivity and managerial impacts. Biomass Bioenergy 2016, 93, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Visser, R.; Björheden, R.; Roser, D. Recovering energy biomass in conventional forest operations: A review of integrated harvesting systems. Curr. For. Rep. 2019, 5, 90. [Google Scholar] [CrossRef]
- Woo, H.; Han, H.S. Performance of screening biomass feedstocks using Star and Deck screen machines. Appl. Eng. Agric. 2018, 34, 35–42. [Google Scholar] [CrossRef]
- Spinelli, R.; Ivorra, L.; Magagnotti, N.; Picchi, G. Performance of a mobile mechanical screen to improve the commercial quality of wood chips for energy. Bioresour. Technol. 2011, 102, 7366–7370. [Google Scholar] [CrossRef] [PubMed]
- Wagener, W.; Offord, H. Logging Slash: Its Breakdown and Decay at Two Forests in Northern California; PSW-83; USDA Forest Service: Berkeley, CA, USA, 1972; 11p. [Google Scholar]
- Ranius, T.; Hämäläinen, A.; Egnell, G.; Olsson, B.; Eklöf, K.; Stendahl, J.; Rudolphi, J.; Sténs, A.; Felton, A. The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. J. Environ. Manag. 2018, 209, 409–425. [Google Scholar] [CrossRef]
- Jones, G.; Loeffler, D.; Calkin, D.; Chung, W. Forest treatment residues for thermal energy compared with disposal by onsite burning: Emissions and energy return. Biomass Bioenergy 2010, 34, 737–746. [Google Scholar] [CrossRef]
- Müller, F.; Jaeger, D.; Hanewinkel, M. Digitization in wood supply—A review on how Industry 4.0 will change the forest value chain. Comp. Electron. Agric. 2019, 162, 206–218. [Google Scholar] [CrossRef]
- McDonald, T.; Fulton, J. Automated time study of skidders using global positioning system data. Comp. Electron. Agric. 2005, 48, 19–37. [Google Scholar] [CrossRef] [Green Version]
- Palander, T.; Nuutinen, Y.; Kariniemi, A.; Väätäinen, K. Automatic time study method for recording work phase times of timber harvesting. For. Sci. 2013, 59, 472–483. [Google Scholar] [CrossRef]
- Keefe, R.; Wempe, A.; Becker, R.; Nagler, E.; Gilbert, S.; Caudill, C. Positioning methods and the use of location and activity data in forests. Forests 2019, 10, 458. [Google Scholar] [CrossRef]
- Palonen, T.; Hyyti, H.; Visala, A. Augmented Reality in Forest Machine Cabin. IFAC-PapersOnLine 2017, 50, 5410–5417. [Google Scholar] [CrossRef]
- Magagnotti, N.; Kanzian, C.; Schulmeyer, F.; Spinelli, R. A new guide for work studies in forestry. Int. J. For. Eng. 2013, 24, 249–253. [Google Scholar] [CrossRef]
- Naganathan, V. Comparative Analysis of Big Data, Big Data Analytics: Challenges and Trends. Int. Res. J. Eng. Technol. 2018, 5, 1948–1964. [Google Scholar]
- Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey Global Institute: New York, NY, USA, 2011; p. 20. [Google Scholar]
- Flood, M. The future of telematics in the manufacturing and management of forest machines. In Proceedings of the Conference “Focus on Forestry 2019”, White River, Mpumalanga, South Africa, 10–12 April 2019. [Google Scholar]
- LeBel, L.; Stuart, W. Technical efficiency evaluation of logging contractors using a nonparametric model. Int. J. For. Eng. 1998, 9, 15–24. [Google Scholar]
- Ottaviani-Aalmo, G.; Baardsen, S. Environmental factors affecting technical efficiency in Norwegian steep terrain logging crews: Astochastic frontier analysis. J. For. Res. 2015, 20, 18–23. [Google Scholar] [CrossRef]
- Bogetoft, P.; Thorsen, B.; Strange, N. Efficiency and Merger Gains in the Danish Forestry Extension Service. For. Sci. 2003, 49, 585–595. [Google Scholar]
- Yin, R. DEA: A New Methodology for Evaluating the Performance of Forest Products Producers. For. Prod. J. 1998, 48, 29–34. [Google Scholar]
- Schreuder, P. New trends in the integration of software into the corporate environment. In Proceedings of the Conference “Focus on Forestry 2019”, White River, Mpumalanga, South Africa, 10–12 April 2019. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinelli, R.; Visser, R.; Han, H.-S. A Decade of Forest Engineering: Achievements and Future Directions. Forests 2019, 10, 724. https://doi.org/10.3390/f10090724
Spinelli R, Visser R, Han H-S. A Decade of Forest Engineering: Achievements and Future Directions. Forests. 2019; 10(9):724. https://doi.org/10.3390/f10090724
Chicago/Turabian StyleSpinelli, Raffaele, Rien Visser, and Han-Sup Han. 2019. "A Decade of Forest Engineering: Achievements and Future Directions" Forests 10, no. 9: 724. https://doi.org/10.3390/f10090724
APA StyleSpinelli, R., Visser, R., & Han, H. -S. (2019). A Decade of Forest Engineering: Achievements and Future Directions. Forests, 10(9), 724. https://doi.org/10.3390/f10090724