Wetting Behavior of Alder (Alnus cordata (Loisel) Duby) Wood Surface: Effect of Thermo-Treatment and Alkyl Ketene Dimer (AKD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Water Contact Angle (WCA)
2.3. ATR-FTIR Analysis
2.4. Artificial Weathering Test of the Samples
2.5. Colour Variation
3. Results and Discussion
3.1. Water Contact Angle (WCA)
3.2. ATR-FTIR Analysis
3.3. Colour Variation
4. Conclusions
- The untreated and thermo-treated wood samples treated with 0.1% of AKD had a significant decrease in WCA after the weathering test.
- The FTIR analysis showed that guaiacyl nuclei in the alder wood was more sensitive to heat degradation than syringyl nuclei.
- The presence of the band between 1720 cm−1 in the FTIR spectra before the use of UV could indicate the formation of the carbonyl groups originated from the reaction between AKD and hydroxyl groups of cellulose, making the surface water repellent.
- After the weathering test, the band between 1700 cm−1 and 1750 cm−1 in FTIR spectra disappeared, thus it could be assumed that there were other interactions, more or less, strong between the wood and AKD.
- The analysis of WCA showed that the investigated range of AKD, at 5% and 10%, did not differ in wettability also after weathering test. This evidence suggests that the optimal solution could be found in this range.
- In terms of colour variation, the results revealed that AKD in outdoor conditions was not very effective in restricting UV light induced degradation in the wood specimens.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Todaro, L.; D’Auria, M.; Langerame, F.; Salvi, A.M.; Scopa, A. Surface characterization of untreated and hydro-thermally pre-treated Turkey oak woods after UV-C irradiation. Surf. Interface Anal. 2015, 47, 206–215. [Google Scholar] [CrossRef]
- Hingston, J.A.; Collins, C.D.; Murphy, R.J.; Lester, J.N. Leaching of chromated copper arsenate wood preservatives: A review. Environ. Pollut. 2001, 111, 53–66. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 260. [Google Scholar]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh-und Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Boluk, Y. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources 2008, 3, 517–537. [Google Scholar]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef] [Green Version]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1984; Volume 613, pp. 1960–1982. [Google Scholar]
- Altgen, M.; Willems, W.; Militz, H. Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system. Eur. J. Wood Wood Prod. 2016, 74, 653–662. [Google Scholar] [CrossRef]
- Wikberg, H.; Maunu, S.L. Characterisation of thermally modified hard-and softwoods by 13 C CPMAS NMR. Carbohydr. Polym. 2004, 58, 461–466. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Tjeerdsma, B. Chemical analysis of heat treated softwoods. Eur. J. Wood Wood Prod. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Mahnert, K.C.; Adamopoulos, S.; Koch, G.; Militz, H. Topochemistry of heat-treated and N-methylol melamine-modified wood of koto (Pterygota macrocarpa K. Schum.) and limba (Terminalia superba Engl. et. Diels). Holzforschung 2013, 67, 137–146. [Google Scholar] [CrossRef]
- Rowell, R.M.; Banks, W.B. Water Repellency and Dimensional Stability of Wood; US Department of Agriculture, Forest Service, Forest Products Laborator: Madison, WI, USA, 1985; p. 50.
- Petrič, M.; Oven, P. Determination of wettability of wood and its significance in wood science and technology: A critical review. Rev. Adhes. Adhes. 2015, 3, 121–187. [Google Scholar] [CrossRef]
- Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Pichette, A. Changes in wettability of heat-treated wood due to artificial weathering. Wood Sci. Technol. 2012, 46, 1215–1237. [Google Scholar] [CrossRef]
- D’Auria, M.; Lovaglio, T.; Rita, A.; Cetera, P.; Romani, A.; Hiziroglu, S.; Todaro, L. Integrate measurements allow the surface characterization of thermo-vacuum treated alder differentially coated. Measurement 2018, 114, 372–381. [Google Scholar] [CrossRef]
- Rowell, R.M. Chemical modification of wood. Handb. Wood Chem. Wood Compos. 2005, 14, 381. [Google Scholar]
- Hui, B.; Li, Y.; Huang, Q.; Li, G.; Li, J.; Cai, L.; Yu, H. Fabrication of smart coatings based on wood substrates with photoresponsive behavior and hydrophobic performance. Mater. Des. 2015, 84, 277–284. [Google Scholar] [CrossRef]
- Ashori, A.; Babaee, M.; Jonoobi, M.; Hamzeh, Y. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr. Polym. 2014, 102, 369–375. [Google Scholar] [CrossRef]
- Tserki, V.; Zafeiropoulos, N.E.; Simon, F.; Panayiotou, C. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1110–1118. [Google Scholar] [CrossRef]
- Bismarck, A.; Tahhan, R.; Springer, J.; Schulz, A.; Klapötke, T.M.; Zeil, H.; Michaeli, W. Influence of fluorination on the properties of carbon fibres. J. Fluor. Chem. 1997, 84, 127–134. [Google Scholar] [CrossRef]
- Pouzet, M.; Gautier, D.; Charlet, K.; Dubois, M.; Beakou, A. How to decrease the hydrophilicity of wood flour to process efficient composite materials. Appl. Surf. Sci. 2015, 353, 1234–1241. [Google Scholar] [CrossRef]
- Yan, Y.; Amer, H.; Rosenau, T.; Zollfrank, C.; Dörrstein, J.; Jobst, C.; Li, J. Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose 2016, 23, 1189–1197. [Google Scholar] [CrossRef] [Green Version]
- Hubbe, M.A. Paper’s resistance to wetting—A review of internal sizing chemicals and their effects. BioResources 2007, 2, 106–145. [Google Scholar]
- Seppänen, R. On the Internal Sizing Mechanisms of Paper with AKD and ASA Related to Surface Chemistry, Wettability and Friction. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2007. [Google Scholar]
- Yoshida, Y.; Isogai, A. Preparation and characterization of cellulose β-ketoesters prepared by homogeneous reaction with alkylketene dimers: Comparison with cellulose/fatty acid esters. Cellulose 2007, 14, 481. [Google Scholar] [CrossRef]
- Yoshida, Y.; Heux, L.; Isogai, A. Heterogeneous reaction between cellulose and alkyl ketene dimer under solvent-free conditions. Cellulose 2012, 19, 1667–1676. [Google Scholar] [CrossRef]
- Song, X.; Chen, F.; Liu, F. Study on the reaction of alkyl ketene dimer (akd) and cellulose fiber. BioResources 2012, 7, 652–662. [Google Scholar]
- Yang, Q.; Takeuchi, M.; Saito, T.; Isogai, A. Formation of nanosized islands of dialkyl β-ketoester bonds for efficient hydrophobization of a cellulose film surface. Langmuir 2014, 30, 8109–8118. [Google Scholar] [CrossRef]
- Roberts, J.C.; Garner, D.N. The mechanism of alkyl ketene dimer sizing of paper, part I. Tappi J. 1985, 68, 118–121. [Google Scholar]
- Seo, W.S.; Cho, N.S. Effect of water content on cellulose/AKD reaction. Appita J. 2005, 58, 122. [Google Scholar]
- Bottorff, K.J.; Sullivan, M.J. New insights into the AKD sizing mechanism. Nordic Pulp Pap. Res. J. 1993, 8, 86–95. [Google Scholar] [CrossRef]
- Kumar, S.; Chauhan, V.S.; Chakrabarti, S.K. Separation and analysis techniques for bound and unbound alkyl ketene dimer (AKD) in paper: A review. Arabian J. Chem. 2012, 23, 1–7. [Google Scholar] [CrossRef]
- Shi, Z.; Fu, F.; Wang, S.; He, S.; Yang, R. Modification of Chinese fir with alkyl ketene dimer (AKD): Processing and characterization. BioResources 2012, 8, 581–591. [Google Scholar] [CrossRef]
- Loewe, V.; Álvarez, A.; Barrales, L. Growth development of hardwood high value timber species in central south Chile, South America. In Proceedings of the 4th International Scientific Conference on Hardwood Processing, Delft, The Netherlands, 28–30 August 2013; p. 50. [Google Scholar]
- Praciak, A.; Pasiecznik, N.; Sheil, D.; van Heist, M.; Sassen, M.; Correia, C.S.; Dixon, C.; Fyson, G.; Rushford, K.; Teeling, C. The CABI Encyclopedia of Forest Trees; CABI: Oxfordshire, UK, 2013. [Google Scholar]
- Caudullo, G.; Mauri, A. Alnus cordata in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Eds.; EU: Brussels, Belgium, 2016. [Google Scholar]
- Giordano, G. Tecnologia del Legno; I.N.A.P.L.I.: Roma, Italy, 1981; pp. 938–939. [Google Scholar]
- Salca, E.A. Black alder (Alnus glutinosa L.)—A resource for value-added products in furniture industry under European screening. Curr. For. Rep. 2019, 5, 41–54. [Google Scholar] [CrossRef]
- Salca, E.A.; Krystofiak, T.; Lis, B. Evaluation of selected properties of alder wood as functions of sanding and coating. Coatings 2017, 7, 176. [Google Scholar] [CrossRef]
- Todaro, L.; Rita, A.; Moretti, N.; Cuccui, I.; Pellerano, A. Assessment of Thermo-treated Bonded Wood Performance: Comparisons among Norway Spruce, Common Ash, and Turkey Oak. BioResources 2014, 10, 772–781. [Google Scholar] [CrossRef]
- Christiansen, A.W. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives: A critical review of the literature. Part I. Physical responses. Wood Fiber Sci. 2007, 22, 441–459. [Google Scholar]
- Repellin, V.; Guyonnet, R. Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 2005, 59, 28–34. [Google Scholar] [CrossRef]
- Hillis, W.E. High temperature and chemical effects on wood stability. Wood Sci. Technol. 1984, 18, 281–293. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Doré, G.; Younsi, R. Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh-und Werkst. 2008, 66, 355–361. [Google Scholar] [CrossRef]
- Windeisen, E.; Strobel, C.; Wegener, G. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 2007, 41, 523–536. [Google Scholar] [CrossRef]
- Aydemir, D.; Gunduz, G.; Altuntas, E.; Ertas, M.; Sahin, H.T.; Alma, M.H. Investigating changes in the chemical constituents and dimensional stability of heat-treated hornbeam and uludag fir wood. BioResources 2011, 6, 1308–1321. [Google Scholar]
- Colom, X.; Carrillo, F.; Nogués, F.; Garriga, P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 2003, 80, 543–549. [Google Scholar] [CrossRef]
- Carrillo, F.; Colom, X.; Valldeperas, J.; Evans, D.; Huson, M.; Church, J. Structural characterization and properties of lyocell fibers after fibrillation and enzymatic defibrillation finishing treatments. Text. Res. J. 2003, 73, 1024–1030. [Google Scholar] [CrossRef]
- Evans, P.A. Differentiating “hard” from “soft” woods using Fourier transform infrared and Fourier transform spectroscopy. Spectrochim. Acta Part A Mol. Spectrosc. 1991, 47, 1441–1447. [Google Scholar] [CrossRef]
- Hon, N.S. Surface chemistry of oxidized wood. In Cellulose and Wood Chemistry and Technology; Schuerch, C., Ed.; John Wiley and Sons: New York, NY, USA, 1989; p. 1401. [Google Scholar]
- Liang, C.Y.; Marchessault, R.H. Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J. Polym. Sci. Part A Polym. Chem. 1959, 39, 269–278. [Google Scholar] [CrossRef]
- Suttie, E.D.; Hill, C.A.; Jones, D.; Orsler, R.J. Chemically modified solid wood. I. Resistance to fungal attack. Mater. Org. 1998, 32, 159–182. [Google Scholar]
- Hundhausen, U.; Militz, H.; Mai, C. Use of alkyl ketene dimer (AKD) for surface modification of particleboard chips. Eur. J. Wood Wood Prod. 2009, 67, 37–45. [Google Scholar] [CrossRef]
- Odberg, L.; Lindstrom, T.; Liedberg, B.; Gustavsson, J. Evidence for β-ketoester formation during the sizing of paper with alkylketene dimers. Tappi J. 1987, 70, 135–139. [Google Scholar]
Treatment | Pre UV Test | Post UV Test |
---|---|---|
Untreated | A | A post UV |
Thermo-treated | ATH | ATH post UV |
Untreated + 0.1% AKD | A + 0.1%AKD | A + 0.1%AKD post UV |
Thermo-treated + 0.1% AKD | ATH + 0.1%AKD | ATH + 0.1%AKD post UV |
Untreated + 5% AKD | A + 5%AKD | A + 5%AKD post UV |
Thermo-treated + 5% AKD | ATH + 5%AKD | ATH + 5%AKD post UV |
Untreated + 10% AKD | A + 10%AKD | A + 10%AKD post UV |
Thermo-treated + 10% AKD | ATH + 10%AKD | ATH + 10%AKD post UV |
ALDER | ΔL | Δa | Δb | ΔE |
---|---|---|---|---|
Control samples | ||||
A | 0 | 0 | 0 | 0 |
A + 0.1%AKD | −0.14 | 0.03 | 0.36 | 0.42 |
A + 5%AKD | −0.62 | 0.77 | 0.42 | 1.34 |
A + 10%AKD | 0.05 | 0.63 | 0.45 | 0.87 |
Thermo-treated | ||||
ATH | −26.39 | 3.10 | 0.83 | 26.58 |
ATH + 0.1%AKD | −0.38 | −0.44 | −0.01 | 1.32 |
ATH + 5%AKD | 0.57 | −2.02 | −8.27 | 8.58 |
ATH + 10%AKD | −0.04 | −1.37 | −8.78 | 8.90 |
ALDER Post UV | ΔL | Δa | Δb | ΔE |
---|---|---|---|---|
Control samples | ||||
A | −5.02 | −0.34 | 1.66 | 5.31 |
A + 0.1%AKD | −8.52 | 4.76 | 7.52 | 12.36 |
A + 5%AKD | −5.73 | −1.23 | −3.61 | 7.00 |
A + 10%AKD | −6.34 | −0.73 | −5.35 | 8.34 |
Thermo-treated | ||||
ATH | 1.11 | −2.50 | −2.58 | 3.90 |
ATH + 0.1%AKD | 4.22 | −2.72 | −4.13 | 6.58 |
ATH + 5%AKD | 6.24 | −2.74 | −1.32 | 7.28 |
ATH + 10%AKD | 7.68 | −3.04 | 0.59 | 8.47 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovaglio, T.; Gindl-Altmutter, W.; Meints, T.; Moretti, N.; Todaro, L. Wetting Behavior of Alder (Alnus cordata (Loisel) Duby) Wood Surface: Effect of Thermo-Treatment and Alkyl Ketene Dimer (AKD). Forests 2019, 10, 770. https://doi.org/10.3390/f10090770
Lovaglio T, Gindl-Altmutter W, Meints T, Moretti N, Todaro L. Wetting Behavior of Alder (Alnus cordata (Loisel) Duby) Wood Surface: Effect of Thermo-Treatment and Alkyl Ketene Dimer (AKD). Forests. 2019; 10(9):770. https://doi.org/10.3390/f10090770
Chicago/Turabian StyleLovaglio, Teresa, Wolfgang Gindl-Altmutter, Tillmann Meints, Nicola Moretti, and Luigi Todaro. 2019. "Wetting Behavior of Alder (Alnus cordata (Loisel) Duby) Wood Surface: Effect of Thermo-Treatment and Alkyl Ketene Dimer (AKD)" Forests 10, no. 9: 770. https://doi.org/10.3390/f10090770
APA StyleLovaglio, T., Gindl-Altmutter, W., Meints, T., Moretti, N., & Todaro, L. (2019). Wetting Behavior of Alder (Alnus cordata (Loisel) Duby) Wood Surface: Effect of Thermo-Treatment and Alkyl Ketene Dimer (AKD). Forests, 10(9), 770. https://doi.org/10.3390/f10090770