Spatial Pattern of Climate Change Effects on Lithuanian Forestry
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Specifying alternative future scenarios, considering human efforts to mitigate climate change and, therefore, different forest growth, timber demand, and price trends;
- (2)
- Modeling forest resource development and forest use under alternative future scenarios and assuming that current forest management practices are continued;
- (3)
- Quantifying selected ecosystem services and analyzing their spatial and temporal development at the regional branch level of the State forest enterprise. The focus has been on timber supply and biodiversity-related ecosystem services;
- (4)
- Examining the mechanisms of climate change effects on Lithuanian forests and forestry;
- (5)
- Discussing how decision support systems may contribute to more adaptive forest management.
2.1. Study Area
2.2. Climate Change and Market Scenarios
- (1)
- REFERENCE—a continuation of the current development in the EU and only small efforts globally, followed by strong climate change (temperature increase of ca. 3.7 °C by 2100 compared to pre-industrial values). Both timber and pulpwood harvests are expected to increase, with relatively unchanged proportions, and a medium level of logging residue extraction;
- (2)
- EU BIOENERGY—strong EU policies and medium policies in the rest of the world, potentially resulting in medium climate change (temperature increase of ca. 2.5 °C by 2100 compared to pre-industrial values). The share of pulpwood increases until 2050, but thereafter, both timber and pulpwood harvests increase strongly. The logging residue extraction remains at a medium level;
- (3)
- NO POLICY—wood harvests are expected to follow the current national guidelines and impacts from climate change, or its mitigation policies are not considered, including the impact on timber demand and prices.
2.3. Modeling of Forest Resource Development under Changing Climate Conditions
2.4. Assessed Attributes Describing Forests and Forestry
2.5. Mapping and Evaluating Climate Change Effects
3. Results
3.1. Development of Forest Resources and Forestry in Lithuania during the Next Century
3.2. Spatial Pattern of Selected Climate Change Impacts on the Development of Forest Resources and Forestry
3.3. Factors Influencing Climate Change Effects on Lithuanian Forests and Forestry
4. Discussion
4.1. Incorporating Climate Change Effects in Decision Support System Simulations
4.2. Effects of Climate Change on Forests and Forestry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Attribute | Units | Explanation | References |
---|---|---|---|
Standing volume | m3/ha | Gross remaining wood volume of the living trees after harvest and mortality in the preceding period | |
The relative share of broadleaved tree species in the standing volume | Percent | ||
Area-weighted average height of stands at the unit of forest management | m | ||
Area-weighted average diameter at breast height | m | ||
Area-weighted average age | Years | ||
Tree species diversity at the end of each simulation step | Shannon diversity index | The index was calculated considering the volume proportions of all available tree species at forest management unit | [75] |
Gross volume of the trees that died, due to natural mortality during the preceding period | m3/ha | To obtain the figures on mortality rates, we used data from permanent sample plots of the Lithuanian national forest inventory (NFI) referring to three 5-year inventory cycles in 1998–2016. Using detailed information on volumes of trees that died, were harvested, and remained growing on the NFI sample plots, annual mortality models were developed by the State Forest Service for nine main tree species | [76] |
Probability of tree mortality, due to wind, diseases, and competition | Percent | Binary logistic regression models for the mortality were developed using data from permanent sample plots of Lithuanian NFI and following the approaches described in references. Soil fertility gradient, soil humidity gradient, age, height, and diameter of prevailing tree species in the stand; mean height and diameter of the stand; site index; ownership; and forest group (forest group defines the forest management regime) were the variables used as model predictors. Models were developed for eight tree species groups (pine, spruce, birch, black alder, aspen, grey alder, oak, and ash), all of which were statistically significant. Probability of tree mortality was used to describe current forest conditions only | [77,78] |
Volume of harvest residues and sawlogs, pulpwood, and logs remaining in the forest during the simulation period | m3/ha/year | The distribution of harvested timber by assortments and their prices were taken from the state forestry statistics of the last five years from 2013 to 2018. To reduce the number of assortment categories, the pulpwood volume also included the volume of roundwood for particleboard and firewood | [79] |
Net volume increment | m3/ha/year | Volume Increment [t + 1] = (Standing Volume [t + 1]—Standing Volume [t] + Harvest Volume [t + 1] + Mortality Volume [t + 1])/10where t and t + 1 are two subsequent points of time (e.g., t: 2020, t + 1: 2030) | |
Felling rates | Percent | Felling as percent of net annual increment | |
Costs, revenues, and profits from forestry activities during each simulation period | Eur Eur/ha | Total values and values per 1 ha of the forested area at forest management unit |
Type of Costs | Units | Explanation | References |
---|---|---|---|
Afforestation and reforestation costs | Eur/ha | Costs are based on the figures available from the “Order of payments for afforestation, forest tending and protection” by National Paying Agency. The same source was used to estimate all other costs per ha, including the pre-commercial thinning costs | [80] |
Costs to support natural regeneration | Eur/ha | Calculated for all natural pine, oak, and ash stands with an age of 10 years or less at the end of each simulation period | |
Tending costs | Eur/ha | Estimated for young stands up to seven years for coniferous (three occasions of tending) and noble deciduous, and five for the remaining deciduous tree species (two occasions) | |
Costs of pre-commercial thinning | Eur/m3 | Estimated based on the volume cut and the thinning intensity | |
Commercial thinning and final harvesting costs | Eur/m3 | Estimated based on volumes of merchantable timber to be harvested and expert-based knowledge of commercial harvesting costs, supported by direct timber harvesting, extraction, and transportation, as well as selling administration costs in the Lithuanian State forestry sector during 2014–2016. |
Tree Species | Price by Decades | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2020 | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 | 2090 | 2100 | 2010 | 2020 | |
REFERENCE, final cutting | ||||||||||||
Pine | 40.40 | 40.85 | 40.34 | 43.30 | 62.31 | 63.30 | 63.32 | 69.40 | 73.76 | 76.81 | 79.86 | 82.91 |
Spruce | 35.22 | 36.14 | 36.02 | 35.81 | 50.64 | 50.46 | 50.48 | 54.31 | 57.05 | 58.98 | 60.90 | 62.82 |
Oak | 93.07 | 92.46 | 90.67 | 103.61 | 142.95 | 147.55 | 147.61 | 162.68 | 173.47 | 181.01 | 188.55 | 196.09 |
Ash | 34.56 | 34.37 | 33.81 | 37.88 | 50.26 | 51.70 | 51.72 | 56.46 | 59.86 | 62.23 | 64.60 | 66.97 |
Birch | 37.49 | 38.34 | 38.25 | 37.90 | 51.14 | 50.93 | 50.94 | 54.30 | 56.71 | 58.40 | 60.09 | 61.77 |
Black alder | 24.16 | 24.04 | 23.71 | 26.12 | 33.45 | 34.31 | 34.32 | 37.12 | 39.13 | 40.54 | 41.94 | 43.35 |
Aspen | 18.38 | 18.62 | 18.55 | 18.75 | 23.54 | 23.58 | 23.59 | 24.92 | 25.87 | 26.54 | 27.21 | 27.88 |
Grey alder | 10.89 | 10.87 | 10.79 | 11.31 | 12.88 | 13.06 | 13.07 | 13.67 | 14.10 | 14.40 | 14.70 | 15.00 |
EU BIOENERGY, final cutting | ||||||||||||
Pine | 40.40 | 40.36 | 40.85 | 43.16 | 43.55 | 52.96 | 58.89 | 66.71 | 70.49 | 75.36 | 80.24 | 85.11 |
Spruce | 35.22 | 35.06 | 35.02 | 35.86 | 35.56 | 41.48 | 45.21 | 51.05 | 53.99 | 57.75 | 61.50 | 65.26 |
Oak | 93.07 | 93.35 | 95.51 | 102.90 | 105.36 | 128.68 | 143.36 | 160.24 | 168.08 | 178.28 | 188.49 | 198.70 |
Ash | 34.56 | 34.65 | 35.33 | 37.66 | 38.43 | 45.77 | 50.39 | 55.69 | 58.16 | 61.37 | 64.58 | 67.79 |
Birch | 37.49 | 37.33 | 37.27 | 37.95 | 37.65 | 42.84 | 46.12 | 51.31 | 53.94 | 57.29 | 60.65 | 64.00 |
Black alder | 24.16 | 24.21 | 24.61 | 25.99 | 26.45 | 30.79 | 33.53 | 36.67 | 38.13 | 40.03 | 41.93 | 43.83 |
Aspen | 18.38 | 18.35 | 18.37 | 18.74 | 18.71 | 20.77 | 22.07 | 23.98 | 24.93 | 26.15 | 27.37 | 28.59 |
Grey alder | 10.89 | 10.90 | 10.99 | 11.28 | 11.38 | 12.31 | 12.90 | 13.57 | 13.88 | 14.29 | 14.70 | 15.11 |
REFERENCE, intermediate cutting | ||||||||||||
Pine | 36.70 | 37.11 | 36.64 | 39.33 | 56.60 | 57.50 | 57.52 | 63.04 | 67.00 | 69.77 | 72.54 | 75.31 |
Spruce | 21.83 | 22.40 | 22.32 | 22.19 | 31.38 | 31.28 | 31.29 | 33.66 | 35.36 | 36.55 | 37.74 | 38.93 |
Oak | 67.70 | 67.26 | 65.96 | 75.37 | 103.99 | 107.34 | 107.38 | 118.34 | 126.19 | 131.68 | 137.17 | 142.65 |
Ash | 27.77 | 27.61 | 27.16 | 30.43 | 40.37 | 41.53 | 41.55 | 45.36 | 48.08 | 49.99 | 51.90 | 53.80 |
Birch | 29.50 | 30.18 | 30.10 | 29.83 | 40.25 | 40.08 | 40.09 | 42.74 | 44.63 | 45.96 | 47.29 | 48.62 |
Black alder | 17.30 | 17.21 | 16.97 | 18.70 | 23.95 | 24.56 | 24.57 | 26.58 | 28.02 | 29.02 | 30.03 | 31.03 |
Aspen | 16.28 | 16.49 | 16.43 | 16.60 | 20.85 | 20.88 | 20.89 | 22.07 | 22.91 | 23.50 | 24.10 | 24.69 |
Grey alder | 8.38 | 8.37 | 8.31 | 8.71 | 9.92 | 10.06 | 10.06 | 10.52 | 10.85 | 11.09 | 11.32 | 11.55 |
EU BIOENERGY, intermediate cutting | ||||||||||||
Pine | 36.70 | 36.67 | 37.11 | 39.21 | 39.56 | 48.11 | 53.49 | 60.59 | 64.03 | 68.46 | 72.88 | 77.31 |
Spruce | 21.83 | 21.73 | 21.70 | 22.22 | 22.04 | 25.71 | 28.02 | 31.64 | 33.46 | 35.79 | 38.12 | 40.45 |
Oak | 67.70 | 67.91 | 69.48 | 74.86 | 76.64 | 93.61 | 104.29 | 116.57 | 122.27 | 129.70 | 137.12 | 144.55 |
Ash | 27.77 | 27.84 | 28.38 | 30.25 | 30.87 | 36.76 | 40.48 | 44.74 | 46.72 | 49.30 | 51.88 | 54.46 |
Birch | 29.50 | 29.38 | 29.33 | 29.87 | 29.63 | 33.72 | 36.29 | 40.38 | 42.45 | 45.09 | 47.73 | 50.37 |
Black alder | 17.30 | 17.33 | 17.62 | 18.61 | 18.93 | 22.04 | 24.00 | 26.25 | 27.30 | 28.66 | 30.02 | 31.38 |
Aspen | 16.28 | 16.25 | 16.27 | 16.60 | 16.57 | 18.39 | 19.54 | 21.24 | 22.08 | 23.16 | 24.24 | 25.32 |
Grey alder | 8.38 | 8.39 | 8.46 | 8.69 | 8.76 | 9.48 | 9.93 | 10.45 | 10.69 | 11.00 | 11.32 | 11.63 |
Forest Attribute | Results of Tests by Climate Change Scenario | |||||
---|---|---|---|---|---|---|
REFERENCE | EU BIOENERGY | |||||
Moran’s I Index Value | z-Score | p-Value | Moran’s I Index Value | z-Score | p-Value | |
Standing volume in 1 ha | 0.511 | 4.205 | 0.000 | 0.497 | 4.085 | 0.000 |
Average diameter of all forest stands | 0.598 | 4.894 | 0.000 | 0.634 | 5.169 | 0.000 |
Annual wood volume increment | 0.655 | 5.330 | 0.000 | 0.672 | 5.448 | 0.000 |
Annual natural mortality | 0.608 | 4.945 | 0.000 | 0.586 | 4.774 | 0.000 |
Relative share of broadleaved tree species in the standing volume | 0.422 | 3.352 | 0.000 | 0.415 | 3.466 | 0.000 |
Tree species diversity | 0.353 | 2.979 | 0.003 | 0.323 | 2.741 | 0.006 |
Volume of sawlogs harvested annually | 0.419 | 3.499 | 0.000 | 0.372 | 3.139 | 0.002 |
Volume of pulpwood harvested annually | 0.417 | 3.458 | 0.001 | 0.387 | 3.229 | 0.001 |
Annual volume of harvesting residues | 0.420 | 3.500 | 0.000 | 0.380 | 3.186 | 0.001 |
Felling rate | 0.536 | 4.391 | 0.000 | 0.495 | 4.075 | 0.000 |
Profit from forestry activities | 0.426 | 3.521 | 0.000 | 0.321 | 2.733 | 0.000 |
References
- Walther, G.R. Plants in a warmer world. Perspect. Plant Ecol. 2003, 6, 169–185. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- De Vries, W.; Solberg, S.; Dobbertin, M.; Sterbad, H.; Laubhannd, D.; van Oijene, M.; Evansf, C.; Gunderseng, P.; Krosa, J.; Wamelinka, G.W.W.; et al. The impact of nitrogen deposition on carbon sequestration in European forests and heathlands. For. Ecol. Manag. 2009, 258, 1814–1823. [Google Scholar] [CrossRef]
- Solberg, S.; Dobbertin, M.; Reinds, G.J.; Lange, H.; Andreassen, K.; Fernandez, P.G.; Hildingsson, A.; De Vries, W. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. Ecol. Manag. 2009, 258, 1735–1750. [Google Scholar] [CrossRef]
- Dobbertin, M.; Neumann, M.; Schroeck, H.-W. Tree Growth Measurements in Long-Term Forest Monitoring in Europe. Persistent Org. Pollut. Asia Sources Distrib. Transp. Fate 2013, 12, 183–204. [Google Scholar]
- Augustaitis, A. Impact of Meteorological Parameters on Responses of Pine Crown Condition to Acid Deposition at Aukštaitija National Park. Balt. For. 2011, 17, 205–214. [Google Scholar]
- Juknys, R.; Augustaitis, A.; Venclovienė, J.; Kliučius, A.; Adomas, V.; Bartkevičius, E.; Jurkonis, N. Dynamic response of tree growth to changing environmental pollution. Eur. J. For. Res. 2014, 133, 713–724. [Google Scholar] [CrossRef]
- Vuorenmaa, J.; Augustaitis, A.; Beudert, B.; Clarke, N.; de Wit, H.A.; Dirnböck, T.; Frey, J.; Forsius, M.; Indriksone, I.; Kleemola, S.; et al. Long-term sulphate and inorganic nitrogen mass balance budgets in European ICP Integrated Monitoring catchments (1990–2012). Ecol. Indic. 2017, 76, 15–29. [Google Scholar] [CrossRef]
- De Vries, W.; Posch, M. Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900–2050. Environ. Pollut. 2011, 159, 2289–2299. [Google Scholar] [CrossRef]
- De Vries, W.; Dobbertin, M.H.; Solberg, S.; Van Dobben, H.F.; Schaub, M. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: An overview. Plant. Soil 2014, 380, 1–45. [Google Scholar] [CrossRef]
- Augustaitis, A.; Augustaitiene, I.; Mozgeris, G.; Juknys, R.; Vitas, A.; Jasinevičiene, D. Growth patterns of Scots pine (Pinus sylvestris L.) under the current regional pollution load in Lithuania. iFor.-Biogeosc. For. 2015, 8, 509–516. [Google Scholar] [CrossRef]
- Augustaitis, A.; Augustaitienė, I.; Činga, G.; Mažeika, J.; Deltuvas, R.; Juknys, R.; Vitas, A. Did the Ambient Ozone Affect Stem Increment of Scots Pines (Pinus sylvestris L.) on Territories under Regional Pollution Load? Step III of Lithuanian Studies. Sci. World J. 2007, 7, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Augustaitis, A.; Augustaitienė, I.; Kliučius, A.; Pivoras, G.; Šopauskienė, D.; Girgždienė, R. The seasonal variability of air pollution effects on pine conditions under changing climates. Eur. J. For. Res. 2010, 129, 431–441. [Google Scholar] [CrossRef]
- Augustaitis, A.; Šopauskienė, D.; Baužienė, I. Direct and Indirect Effects of Regional Air Pollution on Tree Crown Defoliation. Balt. For. 2010, 16, 23–34. [Google Scholar]
- Augustaitis, A.; Augustaitienė, I.; Baumgarten, M.; Bičenkienė, S.; Girgždienė, R.; Kulbokas, G.; Linkevičius, E.; Marozas, V.; Mikalajūnas, M.; Mordas, G.; et al. Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania. Sci. Total Environ. 2018, 615, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Bringmark, L.; Lundin, L.; Augustaitis, A.; Beudert, B.; Dieffenbach-Fries, H.; Dirnböck, T.; Grabner, M.T.; Hutchins, M.; Kram, P.; Lyulko, I.; et al. Trace Metal Budgets for Forested Catchments in Europe—Pb, Cd, Hg, Cu and Zn. Water Air Soil Pollut. 2013, 224, 1502. [Google Scholar] [CrossRef]
- Carpenter, S.; Walker, B.; Anderies, J.M.; Abel, N. From Metaphor to Measurement: Resilience of What to What? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Augustaitis, A. Pine sawfly (Diprion pini L.)—Related changes in Scots pine crown defoliation and possibilities of recovery. Pol. J. Environ. Stud. 2007, 16, 363–369. [Google Scholar]
- Vanoni, M.; Bugmann, H.; Nötzli, M.; Bigler, C. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. Ecol. Manag. 2016, 382, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Paris Agreement, FCCC/CP/2015/10/Add.1. United Nations Framework Convention on Climate Change. 2015. Available online: https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf (accessed on 27 November 2018).
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; Elzen, M.D.; Penman, J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [Google Scholar] [CrossRef]
- Luyssaert, S.; Marie, G.; Valade, A.; Chen, Y.-Y.; Djomo, S.N.; Ryder, J.; Otto, J.; Naudts, K.; Lansø, A.S.; Ghattas, J.; et al. Trade-offs in using European forests to meet climate objectives. Nat. Cell Boil. 2018, 562, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; Persson, J.; Tome, M.; Hanewinkel, M. Climate Change: Believing and Seeing Implies Adapting. PLoS ONE 2012, 7, 50182. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Non-Legally Binding Authoritative Statement of Principles for a Global Consensus on the Management, Conservation and Sustainable Development of All Types of Forests; United Nations: New York, NY, USA, 1992. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Rauscher, H. Ecosystem management decision support for federal forests in the United States: A review. Ecol. Manag. 1999, 114, 173–197. [Google Scholar] [CrossRef]
- Reynolds, K.M. Integrated decision support for sustainable forest management in the United States: Fact or fiction? Comput. Electron. Agric. 2005, 49, 6–23. [Google Scholar] [CrossRef]
- Twery, M.J.; Knopp, P.D.; Thomasma, S.A.; Rauscher, H.M.; Nute, D.E.; Potter, W.D.; Maier, F.; Wang, J.; Dass, M.; Uchiyama, H.; et al. NED-2: A decision support system for integrated forest ecosystem management. Comput. Electron. Agric. 2005, 49, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, K.; Twery, M.; Lexer, M.; Vacik, H.; Ray, D.; Shao, G.; Borges, J. Decision support systems in natural resource management. In Handbook on Decision Support Systems. Springer, International Handbooks on Information Systems Series, Handbook on Decision Support System; Burstein, F., Holsapple, C., Eds.; Springer: Berlin, Germany, 2008; pp. 499–534. [Google Scholar]
- Biber, P.; Borges, J.; Moshammer, R.; Barreiro, S.; Botequim, B.; Brodrechtová, Y.; Brukas, V.; Chirici, G.; Cordero-Debets, R.; Corrigan, E.; et al. How sensitive are ecosystem services in European forest landscapes to silvicultural treatment? Forests 2015, 6, 1666–1695. [Google Scholar] [CrossRef]
- Orazio, C.; Cordero Montoya, R.; Régolini, M.; Borges, J.; Garcia-Gonzalo, J.; Barreiro, S.; Botequim, B.; Marques, S.; Sedmák, R.; Smrĕcek, R.; et al. Decision Support Tools and Strategies to Simulate Forest Landscape Evolutions Integrating Forest Owner Behaviour: A Review from the Case Studies of the European Project, INTEGRAL. Sustainability 2017, 9, 599. [Google Scholar] [CrossRef]
- Packalen, T.; Sallnas, O.; Sirkia, S.; Korhonen, K.; Salminen, O.; Vidal, C.; Robert, N.; Colin, A.; Belouard, T.; Schadauer, K.; et al. The European Forestry Dynamics Model.: Concept, Design and Results of First Case Studies; Publications Office of the European Union: Brussels, Belgium, 2014; EUR 27004. [Google Scholar]
- Reyer, C.; Lasch-Born, P.; Suckow, F.; Gutsch, M.; Murawski, A.; Pilz, T. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 2014, 71, 211–225. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Hengeveld, G.; Reyer, C.; Hanewinkel, M.; Zimmermann, N.E. Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Reg. Environ. Chang. 2015, 15, 1581–1594. [Google Scholar] [CrossRef] [Green Version]
- Nordström, E.-M.; Nieuwenhuis, M.; Başkent, E.Z.; Biber, P.; Black, K.; Borges, J.G.; Bugalho, M.N.; Corradini, G.; Corrigan, E.; Eriksson, L.O.; et al. Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. Eur. J. For. Res. 2019, 138, 561–581. [Google Scholar] [CrossRef]
- Barreiro, S.; Schelhaas, M.J.; Kändler, G.; Antón-Fernández, C.; Colin, A.; Bontemps, J.D.; Alberdi, I.; Condés, S.; Dumitru, M.; Ferezliev, A.; et al. Overview of methods and tools for evaluating future woody biomass availability in European countries. Ann. For. Sci. 2016, 73, 823–837. [Google Scholar] [CrossRef] [Green Version]
- Nobre, S.; Eriksson, L.-O.; Trubins, R. The use of decision support systems in forest management: Analysis of FORSYS country reports. Forests 2016, 7, 72. [Google Scholar] [CrossRef]
- Vacik, H.; Lexer, M.J. Past, current and future drivers for the development of decision support systems in forest management. Scand. J. For. Res. 2014, 29, 2–19. [Google Scholar] [CrossRef]
- Lundholm, A.; Corrigan, E.; Nieuwenhuis, M. Implementing climate change and associated future timber price trends in a decision support system designed for Irish forest management and applied to Ireland’s Western Peatland forests. Forests 2019, 10, 270. [Google Scholar] [CrossRef]
- Petrauskas, E.; Kuliešis, A. Scenario-based analysis of possible management alternatives for Lithuanian forests in the 21st century. Balt. For. 2004, 10, 72–82. [Google Scholar]
- Mozgeris, G.; Brukas, V.; Stanislovaitis, A.; Kavaliauskas, M.; Palicinas, M. Owner mapping for forest scenario modelling—A Lithuanian case study. For. Policy Econ. 2017, 85, 235–244. [Google Scholar] [CrossRef]
- Mozgeris, G.; Kavaliauskas, M.; Brukas, V.; Stanislovaitis, A. Assessment of timber supply under alternative contextual scenarios. For. Policy Econ. 2019, 103, 36–44. [Google Scholar] [CrossRef]
- Jasinevičius, G.; Lindner, M.; Verkerk, P.J.; Aleinikovas, M. Assessing Impacts of Wood Utilisation Scenarios for a Lithuanian Bioeconomy: Impacts on Carbon in Forests and Harvested Wood Products and on the Socio-Economic Performance of the Forest-Based Sector. Forests 2017, 8, 133. [Google Scholar] [CrossRef]
- Pang, X.L.; Trubins, R.; Lekavicius, V.; Galinis, A.; Mozgeris, G.; Kulbokas, G.; Mörtberg, U. Forest bioenergy feedstock in Lithuania—Renewable energy goals and the use of forest resources. Energy Strategy Rev. 2018, 24, 244–253. [Google Scholar] [CrossRef]
- Bohn, U.; Gollub, G.; Hettwer, C.; Weber, H.; Neuhäuslová, Z.; Raus, T.; Schlüter, H. Karte der Natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe. Maßstab/Scale 1:2,500,000; Landwirtschaftsverlag: Münster, Germany, 2003. [Google Scholar]
- Laasimer, L.; Kuusk, V.; Tabaka, L.; Lekavičius, A. Flora of the Baltic Countries: Compendium of Vascular Plants; Institute of Zoology and Botany, Estonian Agricultural University: Tartu, Estonia, 1993; Volume 1. [Google Scholar]
- Karazija, S. Lietuvos Miško Tipai [Forest Types in Lithuania]; Mokslas: Vilnius, Lithuania, 1998; pp. 46–48. (In Lithuanian) [Google Scholar]
- Lithuanian Statistical Yearbook of Forestry 2018, Ministry of Environment, State Forest Service. Available online: http://www.amvmt.lt/index.php/leidiniai/misku-ukio-statistika/2018 (accessed on 6 May 2019).
- State Forest Service. 2018; Miškų Kadastras Forest Cadastre. Available online: http://www.amvmt.lt/index.php/kadastras (accessed on 27 November 2018).
- Forsell, N.; Korosuo, A. Milestone 6—Global and Country Specific Prospective Scenarios. Project ALTERFOR Report. 2016, p. 20. Available online: https://www.alterfor-project.eu/files/alterfor/download/Deliverables/MS%206%20Global%20and%20country%20specific%20scenarios_1.pdf (accessed on 27 November 2018).
- Forsell, N.; Korosuo, A.; Havlík, P.; Valin, H.; Lauri, P.; Gusti, M.; Kindermann, G.; Obersteiner, M.; Böttcher, H.; Hennenberg, K.; et al. Study on Impacts on Resource Efficiency of Future EU Demand for Bioenergy (ReceBio); Final Report. Project: ENV.F.1/ETU/2013/0033; Publications Office of the European Union: Luxembourg, 2016; 43p. [Google Scholar]
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M.; et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Environ. Chang. 2017, 42, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Kuliešis, A. Lietuvos Medynų Prieaugio ir jo Panaudojimo Normatyvai Forest Yield Models and Tables in Lithuania; Girios Aidas: Kaunas, Lithuania, 1993; 383p. [Google Scholar]
- Salmi, T.; Anu Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS. Finnish Meteorological Institute, Air Quality Research, Publications on Air Quality No. 31, Report Code FMI-AQ-31. 2002. Available online: https://www.researchgate.net/publication/259356944 (accessed on 9 December 2018).
- State Forest Service. Miškotvarkos Darbų Vykdymo Instrukcija Specifications of Forest Management Planning. 2010. Available online: https://www.e-tar.lt/portal/lt/legalAct/TAR.44E2BF82EF29/WIPCyylDED (accessed on 7 January 2019).
- Forest Europe; Liaison Unit Oslo. State of Europe’s Forests 2011. Status and Trends in Sustainable Forest Management in Europe. In Proceedings of the Ministerial Conference on the Protection of Forests in Europe, Oslo, Norway, 14–16 June 2011; Forest Europe: Madrid, Spain; Liaison Unit Oslo: Madrid, Spain, 2011. [Google Scholar]
- Aleksandras Stulginskis University. Project Development for a Forest Management and Land Use Scenario Modeling Subsystem within the National Forest Inventory Information System; Final Report; Research Project is Implemented Following the Conditions of the Agreement between Aleksandras Stulginskis University and State Forest Service No. 22 from 26 May 2016; Aleksandras Stulginskis University: Akademija, Lithuania, 2017; 411p. [Google Scholar]
- Martínez-Vilalta, J.; López, B.C.; Adell, N.; Badiella, L.; Ninyerola, M. Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob. Chang. Biol. 2008, 14, 2868–2881. [Google Scholar] [CrossRef] [Green Version]
- Loustau, D.; Bosc, A.; Colin, A.; Ogée, J.; Davi, H.; François, C.; Dufrêne, E.; Déqué, M.; Cloppet, E.; Arrouays, D.; et al. Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiol. 2005, 25, 813–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera Berned, A.; Nieuwenhuis, M. The potential impact of intensification on forest productivity under different climate change scenarios. Irish For. 2017, 74, 40–60. [Google Scholar]
- Biber, P.; Nieuwenhuis, M.; Black, K.; Borga, M.; Borges, J.-G.; Felton, A.; Hoogstra-Klein, M.; Lindbladh, M.; Zoccatelli, D. Deliverable 3.2—Synthesis Report: Discrepancies between ES needs and ES Outputs under Current FMMs. 2018. Available online: https://alterfor-project.eu/files/alterfor/download/Deliverables/D3.2%20Synthesis%20report.pdf (accessed on 6 July 2019).
- Bergh, J.; Freeman, M.; Sigurdsson, B.; Kellomäki, S.; Laitinen, K.; Niinistö, S.; Peltola, H.; Linder, S. Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. For. Ecol. Manag. 2003, 183, 327–340. [Google Scholar] [CrossRef]
- Lexer, M.; Hönninger, K.; Scheifinger, H.; Matulla, C.; Groll, N.; Kromp-Kolb, H.; Schadauer, K.; Starlinger, F.; Englisch, M. The sensitivity of Austrian forests to scenarios of climatic change: A large-scale risk assessment based on a modified gap model and forest inventory data. For. Ecol. Manag. 2002, 162, 53–72. [Google Scholar] [CrossRef]
- Fürstenau, C.; Badeck, F.W.; Lasch, P.; Lexer, M.J.; Lindner, M.; Mohr, P.; Suckow, F. Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur. J. For. Res. 2007, 126, 225–239. [Google Scholar] [CrossRef]
- Briceno-Elizondo, E.; Garcia-Gonzalo, J.; Peltola, H.; Matala, J.; Kellomäki, S. Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For. Ecol. Manag. 2006, 232, 152–167. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Peltola, H.; Briceño-Elizondo, E.; Kellomäki, S. Effects of climate change and management on timber yield in boreal forests, with economic implications: A case study. Ecol. Model. 2007, 209, 220–234. [Google Scholar] [CrossRef]
- Boulanger, Y.; Taylor, A.R.; Price, D.T.; Cyr, D.; Sainte-Marie, G. Stand-level drivers most important in determining boreal forest response to climate change. J. Ecol. 2018, 106, 977–990. [Google Scholar] [CrossRef]
- Makrickiene, E.; Mozgeris, G.; Brukas, V.; Brodrechtova, Y.; Sedmak, R.; Salka, J. From command-and-control to good forest governance: A critical comparison between Lithuania and Slovakia. For. Policy Econ. 2019. (Submitted Manuscript). [Google Scholar]
- Brukas, V.; Kuliešis, A.; Sallnäs, O.; Linkevičius, E. Resource availability, planning rigidity and Realpolitik in Lithuanian forest utilization. Nat. Resour. Forum 2011, 35, 77–88. [Google Scholar] [CrossRef]
- Brukas, V. New World, Old Ideas—A Narrative of the Lithuanian Forestry Transition. J. Environ. Policy Plan. 2015, 17, 495–515. [Google Scholar] [CrossRef]
- Seimas of the Republic of Lithuania. Lietuvos Respublikos Miškų Įstatymas Law on Forests of the Republic of Lithuania. 1994. Available online: https://www.e-tar.lt/portal/lt/legalAct/TAR.5D6D055CC00C/vyZMmKTQnZ (accessed on 7 January 2019).
- Stanislovaitis, A.; Brukas, V.; Kavaliauskas, M.; Mozgeris, G. Forest owner is more than her goal: A qualitative typology of Lithuanian owners. Scand. J. 2015, 30, 1–14. [Google Scholar] [CrossRef]
- Brukas, V.; Weber, N. Forest Management after the Economic Transition—At the Crossroads between German and Scandinavian Traditions. For. Policy Econ. 2009, 11, 586–592. [Google Scholar] [CrossRef]
- Begon, M.; Townsend, C.A.; Harper, J.L. Ecology: From Individuals to Ecosystems, 4th ed.; Blackwell Publishing: Oxford, UK, 2006; 738p. [Google Scholar]
- Kuliešis, A.; Kasperavičius, A.; Kulbokas, G. Lithuania (Book Chapter) National Forest Inventories: Assessment of Wood Availability and Use; Springer: Cham, Switzerland, 2016; pp. 521–547. [Google Scholar]
- Borges, J.G.; Tomé, M.; Garcia-Gonzalo, J.; Marques, S.; Botequim, B.; Oliveira, M. A three-step approach to post-fire mortality modelling in maritime pine (Pinus pinaster Ait) stands for enhanced forest planning in Portugal. For. Int. J. 2011, 84, 197–206. [Google Scholar]
- Marques, S.; Garcia-Gonzalo, J.; Botequim, B.; Ricardo, A.; Borges, J.G.; Tomé, M.; Oliveira, M.M. Assessing wildfire occurrence probability in Pinus pinaster Ait. stands in Portugal. For. Syst. 2012, 21, 111–120. [Google Scholar] [CrossRef]
- State Company State Forest Enterprise. 2018. Available online: https://www.vivmu.lt/lt/ (accessed on 27 November 2018).
- National Paying Agency. Order of Payments for Afforestation, Forest Tending and Protection. Available online: https://www.nma.lt/index.php/parama/12?date_from=&date_to=&program=8661&measure=&tab=1&filters=1 (accessed on 7 January 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozgeris, G.; Brukas, V.; Pivoriūnas, N.; Činga, G.; Makrickienė, E.; Byčenkienė, S.; Marozas, V.; Mikalajūnas, M.; Dudoitis, V.; Ulevičius, V.; et al. Spatial Pattern of Climate Change Effects on Lithuanian Forestry. Forests 2019, 10, 809. https://doi.org/10.3390/f10090809
Mozgeris G, Brukas V, Pivoriūnas N, Činga G, Makrickienė E, Byčenkienė S, Marozas V, Mikalajūnas M, Dudoitis V, Ulevičius V, et al. Spatial Pattern of Climate Change Effects on Lithuanian Forestry. Forests. 2019; 10(9):809. https://doi.org/10.3390/f10090809
Chicago/Turabian StyleMozgeris, Gintautas, Vilis Brukas, Nerijus Pivoriūnas, Gintautas Činga, Ekaterina Makrickienė, Steigvilė Byčenkienė, Vitas Marozas, Marius Mikalajūnas, Vadimas Dudoitis, Vidmantas Ulevičius, and et al. 2019. "Spatial Pattern of Climate Change Effects on Lithuanian Forestry" Forests 10, no. 9: 809. https://doi.org/10.3390/f10090809
APA StyleMozgeris, G., Brukas, V., Pivoriūnas, N., Činga, G., Makrickienė, E., Byčenkienė, S., Marozas, V., Mikalajūnas, M., Dudoitis, V., Ulevičius, V., & Augustaitis, A. (2019). Spatial Pattern of Climate Change Effects on Lithuanian Forestry. Forests, 10(9), 809. https://doi.org/10.3390/f10090809