Emission of Volatile Organic Compounds from Heartwood and Sapwood of Selected Coniferous Species
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The effect of the wood species and the occurrence of heartwood and sapwood in the cross-section area on the amount of TVOC emission were evidenced. Irrespective of the time of sample exposition in the chamber, higher TVOC emission was observed for the pine wood than for larch and spruce wood.
- For each tree species studied, the TVOC emission decreased with increasing sample exposure time in the chamber, and this relation could be described by a logarithmic function with a high coefficient of determination (R2 = 0.808–0.983).
- In the pine wood, the heartwood emission of TVOC was about seven times higher than sapwood emission. The difference was almost at the same level for the entire time of exposition. For the larch and spruce wood, the VOC emission was higher from the sapwood than heartwood. The ratio of these emissions was 2.2.
- A comparison of TVOC emission concentrations from the heartwood zones of the samples from the species studied has shown that the concentration was about 17 times higher for the pine wood than for larch and spruce. The differences of TVOC emission concentrations from the sapwood zone of the species were much smaller.
- In the TVOC emission from each species, terpenes comprised the greatest contributing factor. The second most abundant group of compounds emitted was made of those containing the carbonyl group—mostly aldehydes—while the third most abundant group was aromatic compounds.
Author Contributions
Funding
Conflicts of Interest
References
- Mitchell, C.S.; Zhang, J.J.; Sigsgaard, T.; Jantunen, M.; Lioy, P.J.; Samson, R.; Karol, M.H. Current state of the science: Health effects and indoor environmental quality. Environ. Health Perspect. 2007, 115, 958–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, P.; Gebefügi, I.; Richter, K.; Wölke, G.; Schneille, J.; Wichmann, H.-E.; Heinrich, J. Indoor and outdoor BTX levels in German cities. Sci. Total Environ. 2001, 267, 41–51. [Google Scholar] [CrossRef]
- Cohen, Y. Volatile organic compounds in the environment: A multimedia perspective. In Volatile Organic Compounds in the Environment; ASTM STP 1261; Wang, W., Schnoor, J., Doi, J., Eds.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1996; pp. 7–32. [Google Scholar]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Ilgen, E.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H.-E. Aromatic hydrocarbons in the atmospheric environment—Part II: Univariate and multivariate analysis and case studies of indoor concentrations. Atmos. Environ. 2001, 35, 1253–1264. [Google Scholar] [CrossRef]
- Cao, T.; Shen, J.; Wang, O.; Li, H.; Xu, C.; Dong, H. Characteristics of VOCs Released from Plywood in Airtight Environments. Forests 2019, 10, 709. [Google Scholar] [CrossRef] [Green Version]
- Gminski, R.; Marutzky, R.; Kevekordes, S.; Fuhrmann, F.; Bürger, W.; Hauschke, D.; Ebner, W.; Mersch-Sundermann, V. Sensory irritations and pulmonary effects in human volunteers following short-term exposure to pinewood emissions. J. Wood Sci. 2011, 57, 436–445. [Google Scholar] [CrossRef]
- Gminski, R.; Marutzky, R.; Kevekordes, S.; Fuhrmann, F.; Bürger, W.; Hauschke, D.; Ebner, W.; Mersch-Sundermann, V. Chemosensory irritations and pulmonary effects of acute exposure to emissions from oriented strand board. Hum. Exp. Toxicol. 2011, 30, 1204–1221. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Y.; Wei, W. Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. Build. Environ. 2012, 47, 197–204. [Google Scholar] [CrossRef]
- Jensen, L.K.; Larsen, A.; Mølhave, L.; Hansen, M.K.; Knudsen, B. Health evaluation of volatile organic compound (VOC) emissions from wood and wood-based materials. Arch. Environ. Health 2001, 56, 419–432. [Google Scholar] [CrossRef]
- Kirkeskov, L.; Witterseh, T.; Funch, L.W.; Kristiansen, E.; Mølhave, L.; Hansen, M.K.; Knudsen, B.B. Health evaluation of volatile organic compound (VOC) emission from exotic wood products. Indoor Air 2009, 19, 45–57. [Google Scholar] [CrossRef]
- Plaisance, H.; Vignau-Laulhere, J.; Mocho, P.; Sauvat, N.; Raulin, K.; Desauziers, V. Volatile organic compounds concentrations during the construction process in newly-built timber-frame houses: Source identification and emission kinetics. Environ. Sci. Process. Impacts 2017, 5, 696–710. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, D.; Zhang, P.; Li, J.; Wang, J.; Yu, J. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. J. Build. Environ. 2017, 117, 118–126. [Google Scholar] [CrossRef]
- Toxics Release Inventory Chemical List. Available online: www.epa.gov (accessed on 3 July 2019).
- World Health Organisation. Indoor Air Quality: Organic Pollutants; EURO Reports and Studies No. 111; World Health Organization: Geneva, Switzerland, 1989; pp. 2–39. [Google Scholar]
- World Health Organization Regional Office for Europe, World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization Regional Office for Europe, World Health Organization: Copenhagen, Denmark, 2010. [Google Scholar]
- Risholm-Sundman, M.; Lundgren, M.; Vestin, E.; Herder, P. Emission of acetic acid and other volatile organic compounds from different species of solid wood. Holz Roh Werkst. 1998, 56, 125–129. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Kessel Verlag: Remagen, Germany, 2003. [Google Scholar]
- Hejnowicz, Z. Anatomy and Histogenesis of Vascular Plants, 3rd ed.; Polish Scientific Publisher Warsaw (PWN): Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Taiti, C.; Costa, C.; Guidi Nissim, W.; Bibbiani, S.; Azzarello, E.; Masi, E.; Pandolfi, C.; Pallottino, F.; Menesatti, P.; Mancuso, S. Assessing VOC emission by different wood cores using the PTR-ToF-MS technology. Wood Sci. Technol. 2017, 51, 273–295. [Google Scholar] [CrossRef]
- Back, E.L. Pattern of parenchyma and canal resin composition in softwoods and hardwoods. J. Wood Sci. 2002, 48, 167–170. [Google Scholar] [CrossRef]
- Back, E.L.; Allen, L.H. Pitch Control, Wood Resin and Deresination; TAPPI Press: Atlanta, GA, USA, 2000. [Google Scholar]
- Czajka, M.; Fabisiak, E. The radial variation of the density of occurrence of vertical resin canals in selected coniferous species. Ann. WULS For. Wood Technol. 2016, 94, 109–116. [Google Scholar]
- Fabisiak, E.; Czajka, M. The effect of annual ring width on density of axial resin canals in pine wood (Pinus sylvestris L.). Ann. WULS For. Wood Technol. 2011, 74, 40–45. [Google Scholar]
- Song, K.; Yin, Y.; Salmén, L.; Xiao, F.; Jiang, X. Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J. Mater. Sci. 2014, 49, 1734–1742. [Google Scholar] [CrossRef]
- Bergström, B. Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 2003, 76, 45–53. [Google Scholar] [CrossRef]
- Sassoli, M.; Taiti, C.; Guidi Nissim, W.; Costa, C.; Mancuso, S.; Menesatti, P.; Fioravanti, M. Characterization of VOC emission profile of different wood species during moisture cycles. iForest 2017, 10, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Roffael, E. Volatile organic compounds and formaldehyde in nature, wood and wood based panels. Holz Roh Werkst. 2006, 64, 144–149. [Google Scholar] [CrossRef]
- Steckel, V.; Ohlmeyer, M. Comparison of rapid testing systems for determining VOC emissions from wood products with the chamber method. In Proceedings of the 9th Pacific Rim Bio-Based Composites Symposium, Rotorua, New Zealand, 6–8 November 2008. [Google Scholar]
- Wilke, O.; Wiegner, K.; Scheffer, H.; Brödner, D.; Kalus, S. Determination of the emissions of volatile organic compounds from oriented strand boards and evaluation by the German AgBB scheme. Indoor Built Environ. 2014, 23, 1050–1054. [Google Scholar] [CrossRef]
- Baumann, M.G.D.; Batterman, S.; Zhang, G.Z. Terpene emissions from particleboard and medium-density fiberboard products. For. Prod. J. 1999, 49, 49–56. [Google Scholar]
- Makowski, M.; Ohlmeyer, M. Comparison of a small and a large environmental test chamber for measuring VOC emission from OSB made of Scots pine (Pinus sylvestris L.). Holz Roh Werkst. 2006, 64, 469–472. [Google Scholar] [CrossRef]
- Lin, C.C.; Yu, K.P.; Zhao, P.; Lee, G.W.M. Evaluation of impact factors on VOC emissions and concentrations from wooden flooring based on chamber tests. Build. Environ. 2009, 44, 525–533. [Google Scholar] [CrossRef]
- Adamová, T.; Headecký, J.; Prajer, M. VOC Emissions from Spruce Strands and Hemp Shive: In Search for a Low Emission Raw Material for Bio-Based Construction Materials. Materials 2019, 12, 2026. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.G.D.; Lorenz, L.F.; Batterman, S.A.; Zhang, G.Z. Aldehyde emissions from particleboard and medium density fiberboard products. For. Prod. J. 2000, 50, 75–82. [Google Scholar]
- Guo, H.; Murray, F.; Lee, S.-C. Emissions of total volatile organic compounds from pressed wood products in an environmental chamber. Build. Environ. 2002, 37, 1117–1126. [Google Scholar] [CrossRef]
- Hyttinen, M.; Masalin-Weijo, M.; Kalliokoski, P.; Pasanen, P. Comparison of VOC emissions between air-dried and heat-treated Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European aspen (Populus tremula) wood. Atmos. Environ. 2010, 44, 5028–5033. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, H.J. The effect of temperature on VOCs and carbonyl compounds emission from wooden flooring by thermal extractor test method. Build. Environ. 2012, 53, 95–99. [Google Scholar] [CrossRef]
- Makowski, M.; Ohlmeyer, M. Influences of hot pressing temperature and surface structure on VOC emissions from OSB made of Scots pine. Holzforschung 2006, 60, 533–538. [Google Scholar] [CrossRef]
- Ohlmeyer, M. Parameters influencing the emissions of volatile organic compounds from OSB. In Proceedings of the 9th Pacific Rim Bio-Based Composites Symposium, Rotorua, New Zealand, 6–8 November 2008. [Google Scholar]
- Makowski, M.; Ohlmeyer, M. Impact of drying temperature and pressing time factor on VOC emissions from OSB made of Scots pine. Holzforschung 2006, 60, 417–422. [Google Scholar] [CrossRef]
- Ohlmeyer, M.; Makowski, M.; Fried, H.; Hasch, J.; Schoeler, M. Influence of panel thickness on the release of volatile organic compounds from OSB made of Pinus sylvestris L. For. Prod. J. 2008, 58, 65–70. [Google Scholar]
- Peters, J.; Fischer, K.; Fischer, S. Characterization of emissions from thermally modified wood and their reduction by chemical treatment. BioRes 2008, 3, 491–502. [Google Scholar]
- Manninen, A.M.; Pasanen, P.; Holopainen, J.K. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood. Atmos. Environ. 2002, 36, 1763–1768. [Google Scholar] [CrossRef]
- Englund, F.; Nussbaum, R.M. Monoterpenes in Scots pine and Norway spruce and their emission during kiln drying. Holzforschung 2000, 54, 449–456. [Google Scholar] [CrossRef]
- Arshadi, M.; Geladi, P.; Gref, R.; Fjällström, P. Emission of volatile aldehydes and ketones from wood pellets under controlled conditions. Ann. Occup. Hyg. 2009, 53, 797–805. [Google Scholar] [CrossRef]
- Hiltunen, R.; Juvonen, S.; Tigerstedt, P.M.A. Geographical variation in some monoterpenes in Scots pine (Pinus sylvestris L.) in Finland. Farm. Aikak. 1975, 84, 73–82. [Google Scholar]
- Nerg, A.; Kainulainen, P.; Vuorinen, M.; Hanso, M.; Holopainen, J.K.; Kurkela, T. Seasonal and geographical variation of terpenes, resin acids and total phenolics in nursery grown Scots pine (Pinus sylvestris L.). New Phytol. 1994, 128, 703–713. [Google Scholar] [CrossRef]
- Larsen, A.; Frost, L.; Funch, L.W. Emission of Volatile Organic Compounds from Wood and Wood-Based Materials; Working Report No. 15; Danish Technological Institute: Taastrup, Denmark, 2000. [Google Scholar]
- ISO 16000-9. Indoor Air—Part 9: Determination Emission of Volatile Organic Compounds from Building Products and Furnishing-Emission Test Chamber Method; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- ISO 16000-6. Indoor Air—Part 6: Determination of Volatile Organic Compounds in Indoor and Test Chamber Air by Active Sampling on Tenax TA Sorbent, Thermal Desorption and Gas Chromatography Using MS/FID; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Steckel, V.; Welling, J.; Ohlmeyer, M. Emissions of volatile organic compounds from convection dried Norway spruce timber. In Proceedings of the Future of Quality Control for Wood & Wood Products’, The Final Conference of COST Action E53, Edinburgh, UK, 4–7 May 2010; Available online: http://timberdry.net/downloads/EDG-Workshop-Edinburgh/Edinburgh-Presentation/15.pdf (accessed on 3 July 2019).
- Dix, B.; Roffael, E.; Schneider, T. Abgabe von Flüchtigen Verbindungen (Volatile Organic Compounds VOC) von Strands, Hergestellt Aus Kern und Splintholz der Kiefer; WKI Kurzbericht short report 6/2004; Wilhelm-Klauditz-Institut: Holzforschung, Germany, 2004. [Google Scholar]
- Granström, K.M. Emissions of sesquiterpenes from spruce sawdust during drying. Eur. J. Wood Prod. 2009, 267, 343–350. [Google Scholar] [CrossRef]
- McGraw, G.W.; Hemingway, R.W.; Ingram, L.L.; Canady, C.S.; McGraw, W.B. Thermal degradation of terpenes: Camphene, Δ3-carene, limonene, and α-terpinene. Environ. Sci. Technol. 1999, 33, 4029–4033. [Google Scholar] [CrossRef]
- Chan, H.W.S. Autoxidation of Unsaturated Lipids; Academic Press: London, UK, 1987. [Google Scholar]
- Strömvall, A.M.; Petersson, G. Monoterpenes emitted to air from industrial barking of Scandinavian conifers. Environ. Pollut. 1993, 79, 215–218. [Google Scholar] [CrossRef] [Green Version]
- McDonald, A.G.; Dare, P.H.; Gifford, J.S.; Steward, D.; Riley, S. Assessment of air emissions from industrial kiln-drying of Pinus radiata wood. Holz Roh Werkst. 2002, 60, 181–190. [Google Scholar] [CrossRef]
- Sjöström, E. Wood Chemistry: Fundamentals and Applications; New York Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Gminski, R.; Tang, T.; Mersch-Sundermann, V. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards. Toxicol. Lett. 2010, 196, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Englund, F. Emission of Volatile Organic Compounds (VOC) from Wood; Report 1999 01001; Swedish Institute for Wood Technology Research Trätek: Stockholm, Sweden, 1999. [Google Scholar]
- Svedberg, U.R.; Högberg, H.E.; Högberg, J.; Galle, B. Emission of hexanal and carbon monoxide from storage of wood pellets, a potential occupational and domestic health hazard. Ann. Occup. Hyg. 2004, 48, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshadi, M.; Gref, P. Emission of volatile organic compounds from softwood pellets during storage. For. Prod. J. 2005, 55, 132–135. [Google Scholar]
- Nielsen, N.P.K.; Nørgaard, L.; Strobel, B.W.; Felby, C. Effect of storage on extractives from particle surfaces of softwood and hardwood raw materials for wood pellets. Eur. J. Wood Prod. 2009, 67, 19–26. [Google Scholar] [CrossRef]
Compounds | Concentration in the Air Chamber (µg/m3) | |||||
---|---|---|---|---|---|---|
Exposure Time (Day) | ||||||
Scots Pine | European Larch | Norway Spruce | ||||
3 | 28 | 3 | 28 | 3 | 28 | |
Pentanal | − | − | −/29 | −/18 | − | − |
Toluene | 36/38 | 7/6 | −/9 | − | − | − |
Hexanal | 33/77 | 4/152 | 45/46 | 8/24 | −/53 | −/17 |
m/p-Xylene | 22/80 | 12/25 | 27/23 | 17/10 | 18/15 | 5/<1 |
1-Pentanol * | 14/39 | <1/<1 | − | − | − | − |
2-Propanol * | − | − | −/11 | − | − | − |
o-Xylene | 23/20 | <1/<1 | 9/− | 8/− | −/70 | −/26 |
Terpinolene | 40/− | 8/− | − | − | − | − |
α-Pinene | 11448/649 | 3459/294 | 515/1025 | 126/509 | 345/1084 | 119/320 |
Camphene | 198/16 | 23/10 | 12/9 | <1/6 | 15/− | <1/− |
3-Ethyltoluene * | −/39 | −/9 | − | − | − | − |
β-Pinene | 54/45 | 13/15 | 21/54 | 4/14 | −/317 | −/74 |
1-Decane * | −/60 | −/15 | − | − | 17/− | 3/− |
1-Propene * | −/37 | −/3 | −/17 | − | − | − |
3-Carene | 951/134 | 108/40 | 76/61 | 17/16 | 95/87 | 63/45 |
Benzaldehyde | 2/16 | <1/6 | 7/3 | 7/3 | 11/2 | <1/1 |
D-Limonene | 85/31 | 5/<1 | 24/22 | 13/7 | 42/51 | 30/19 |
Octanal | 16/23 | 1/7 | 19/9 | 5/5 | 21/− | <1/− |
2-Ethylhexanol * | − | − | −/16 | −/3 | 34/16 | 1/3 |
n-Undecane * | 1/61 | <1/5 | − | − | 27/17 | <1/6 |
Acetophenone | 1/106 | 1/11 | 10/5 | 19/8 | −/8 | −/5 |
Nonanal | 19/34 | 4/12 | 29/9 | 7/10 | 61/26 | 4/12 |
n-Dodecane * | −/28 | −/5 | 10/− | <1/− | − | − |
Decanal | 30/44 | 11/16 | 29/− | 7/− | − | − |
n-Tetradecane | 2/5 | <1/<1 | − | − | − | − |
Source of Variation | SSB | df | MSB | SSE | df | MSE | F | p |
---|---|---|---|---|---|---|---|---|
Exposure Time | Heartwood | |||||||
1,605,074 | 3 | 535,025 | 183,003 | 8 | 22,875 | 23.3887 | 0.0003 s | |
Sapwood | ||||||||
18,696,335 | 3 | 6,232,112 | 186,258,993 | 8 | 23,282,374 | 0.2676 | 0.8469 ns |
Organic Compounds | Exposure time (Day) | |||||||
---|---|---|---|---|---|---|---|---|
3 | 7 | 14 | 28 | |||||
µg/m3 | % | µg/m3 | % | µg/m3 | % | µg/m3 | % | |
Terpenes | 12776 (875) | 98.5 (55.3) | 8864 (874) | 98.7 (62.0) | 7291 (479) | 99.1 (48.9) | 3616 (359) | 98.9 (57.0) |
Compounds with a carbonyl group | 101 (300) | 0.8 (19.0) | 36 (255) | 0.4 (18.2) | 26 (225) | 0.4 (23.0) | 21 (204) | 0.6 (32.3) |
Other compounds: | ||||||||
Aromatic hydrocarbons | 81 (177) | 0.6 (11.2) | 73 (161) | 0.8 (11.5) | 35 (156) | 0.5 (16.0) | 19 (40) | 0.5 (6.3) |
Aliphatic hydrocarbons | 3 (191) | - (12.1) | - (102) | - (7.3) | 1 (120) | - (12.1) | - (28) | - (4.4) |
Alcohols | 14 (39) | 0.1 (2.4) | 9 (12) | 0.1 (0.9) | 4 (-) | 0.1 (-) | - (-) | - (-) |
Organic Compounds | Exposure Time (Day) | |||||||
---|---|---|---|---|---|---|---|---|
3 | 7 | 14 | 28 | |||||
µg/m3 | % | µg/m3 | % | µg/m3 | % | µg/m3 | % | |
Terpenes | 648 (1171) | 77.8 (86.9) | 391 (1140) | 53.6 (80.4) | 173 (766) | 58.8 (79.4) | 160 (552) | 67.2 (87.2) |
Compounds with a carbonyl group | 139 (101) | 16.7 (7.5) | 248 (182) | 34.0 (12.8) | 85 (131) | 28.9 (13.6) | 53 (68) | 22.3 (10.7) |
Other compounds: | ||||||||
Aromatic hydrocarbons | 36 (32) | 4.3 (2.4) | 70 (31) | 9.6 (2.2) | 34 (35) | 11.6 (3.6) | 25 (10) | 10.5 (1.6) |
Aliphatic hydrocarbons | 10 (17) | 1.2 (1.3) | 20 (16) | 2.7 (1.1) | 2 (12) | 0.7 (1.2) | - (-) | - (-) |
Alcohols | - (27) | - (2.0) | - (49) | - (3.5) | - (21) | - (2.2) | - (3) | - (0.5) |
Organic Compounds | Exposure Time (Day) | |||||||
---|---|---|---|---|---|---|---|---|
3 | 7 | 14 | 28 | |||||
µg/m3 | % | µg/m3 | % | µg/m3 | % | µg/m3 | % | |
Terpenes | 497 (1539) | 72.4 (88.1) | 427 (948) | 80.0 (88.6) | 356 (719) | 75.6 (89.0) | 212 (458) | 94.2 (86.7) |
Compounds with a carbonyl group | 93 (89) | 13.6 (5.1) | 33 (58) | 6.2 (5.4) | 54 (41) | 11.5 (5.1) | 4 (35) | 1.8 (6.6) |
Other compounds: | ||||||||
Aromatic hydrocarbons | 18 (85) | 2.6 (4.9) | 18 (49) | 3.4 (4.6) | 21 (35) | 4.5 (4.3) | 5 (26) | 2.2 (4.9) |
Aliphatic hydrocarbons | 44 (17) | 6.4 (1.0) | 40 (7) | 7.5 (0.7) | 22 (8) | 4.7 (1.0) | 3 (6) | 1.3 (1.1) |
Alcohols | 34 (16) | 5.0 (0.9) | 16 (8) | 3.0 (0.7) | 18 (5) | 3.8 (0.6) | 1 (3) | 0.4 (0.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czajka, M.; Fabisiak, B.; Fabisiak, E. Emission of Volatile Organic Compounds from Heartwood and Sapwood of Selected Coniferous Species. Forests 2020, 11, 92. https://doi.org/10.3390/f11010092
Czajka M, Fabisiak B, Fabisiak E. Emission of Volatile Organic Compounds from Heartwood and Sapwood of Selected Coniferous Species. Forests. 2020; 11(1):92. https://doi.org/10.3390/f11010092
Chicago/Turabian StyleCzajka, Magdalena, Beata Fabisiak, and Ewa Fabisiak. 2020. "Emission of Volatile Organic Compounds from Heartwood and Sapwood of Selected Coniferous Species" Forests 11, no. 1: 92. https://doi.org/10.3390/f11010092
APA StyleCzajka, M., Fabisiak, B., & Fabisiak, E. (2020). Emission of Volatile Organic Compounds from Heartwood and Sapwood of Selected Coniferous Species. Forests, 11(1), 92. https://doi.org/10.3390/f11010092