Root Exudation Rates Decrease with Increasing Latitude in Some Tree Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Study Species
2.2. Root Exudates Collection and Fine Root Sampling
2.3. Soil Sampling and Laboratory Analyses
2.4. Statistical Analyses
3. Results
3.1. Variation of Root Exudation Rate Among Sites and Species
3.2. Root Morphological Traits
3.3. Soil Characteristics
3.4. Relationship Between Root Exudation Rates and Root Traits and Environmental Factors
4. Discussion
4.1. Latitudinal and Tree Species Effects on Root Exudation Rates
4.2. The Relationship Between Root Exudation and Root Morphological Traits and Environmental Factors
4.3. Other Factors That May Explain Root Exudation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamilton, E.W.; Frank, D.A.; Hinchey, P.M.; Murray, T.R. Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland. Soil Biol. Biochem. 2008, 40, 2865–2873. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Sasse, J.; Martinoia, E.; Northen, T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venturi, V.; Keel, C. Signaling in the Rhizosphere. Trends Plant Sci. 2016, 21, 187–198. [Google Scholar] [CrossRef]
- Mccully, M.E. Roots in soil: Unearthing the complexities of roots and their rhizospheres. Annu. Rev. Plant Biol. 1999, 50, 695–718. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Cheng, W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 2001, 33, 1915–1925. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, M.; Xia, X.; Shi, K.; Zhou, Y.; Yu, J. Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J. Chem. Ecol. 2009, 35, 679–688. [Google Scholar] [CrossRef]
- Haichar, F.Z.; Marol, C.; Berge, O.; Rangel-Castro, J.I.; Prosser, J.I.; Balesdent, J.; Heulin, T.; Achouak, W. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008, 2, 1221–1230. [Google Scholar] [CrossRef]
- Shi, S.; Richardson, A.E.; O’callaghan, M.; Deangelis, K.M.; Jones, E.E.; Stewart, A.; Firestone, M.K.; Condron, L.M. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 2011, 77, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Bengtson, P.; Barker, J.; Grayston, S.J. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol. Evol. 2012, 2, 1843–1852. [Google Scholar] [CrossRef]
- Kelting, D.L.; Burger, J.A.; Edwards, G.S. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biol. Biochem. 1998, 30, 961–968. [Google Scholar] [CrossRef]
- Van Hees, P.A.W.; Jones, D.L.; Finlay, R.; Godbold, D.L.; Lundström, U.S. The carbon we do not see—The impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: A review. Soil Biol. Biochem. 2005, 37, 1–13. [Google Scholar] [CrossRef]
- Sun, L.; Kominami, Y.; Yoshimura, K.; Kitayama, K. Root-exudate flux variations among four co-existing canopy species in a temperate forest, Japan. Ecol. Res. 2017, 32, 331–339. [Google Scholar] [CrossRef]
- Grayston, S.J. Rhizosphere carbon flow in trees, in comparison with annual plant, the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 1996, 5, 29–56. [Google Scholar] [CrossRef]
- Coleman, M.; Tolsted, D.; Nichols, T.; Johnson, W.; Wene, E.; Houghtaling, T. Post-establishment fertilization of Minnesota hybrid poplar plantations. Biomass Bioenergy 2006, 30, 740–749. [Google Scholar] [CrossRef]
- Shan, J.; Morris, L.A.; Hendrick, R.L. The effects of management on soil and plant carbon sequestration in slash pine plantations. J. Appl. Ecol. 2001, 38, 932–941. [Google Scholar] [CrossRef]
- Will, R.E.; Markewitz, D.; Hendrick, R.L.; Meason, D.F.; Crocker, T.R.; Borders, B.E. Nitrogen and phosphorus dynamics for 13-year-old loblolly pine stands receiving complete competition control and annual N fertilizer. For. Ecol. Manag. 2006, 227, 155–168. [Google Scholar] [CrossRef]
- Personeni, E.; Nguyen, C.; Marchal, P.; Pages, L. Experimental evaluation of an efflux-influx model of C exudation by individual apical root segments. J. Exp. Bot. 2007, 58, 2091–2099. [Google Scholar] [CrossRef]
- Lamont, B.B. Structure, ecology and physiology of root clusters—A review. Plant Soil 2003, 248, 1–19. [Google Scholar] [CrossRef]
- Mcdougall, B.M.; Rovira, A. Sites of exudation of 14C-labelled compounds from wheat roots. New Phytol. 1970, 69, 999–1003. [Google Scholar] [CrossRef]
- Jones, D.L.; Hodge, A.; Kuzyakov, Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 2004, 163, 459–480. [Google Scholar] [CrossRef]
- Mccormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ataka, M.; Kominami, Y.; Yoshimura, K. Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiol. 2017, 37, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Pregitzer, K.S.; Deforest, J.L.; Burton, A.J.; Allen, M.F.; Ruess, R.W.; Hendrick, R.L. Fine root architecture of nine North American trees. Ecol. Monogr. 2002, 72, 293–309. [Google Scholar] [CrossRef]
- Guo, D.; Xia, M.; Wei, X.; Chang, W.; Liu, Y.; Wang, Z. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 2008, 180, 673–683. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, J.; Ding, J.; Zou, T.; Zhang, Z.; Liu, Q.; Yin, H. Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees. In Plant and Soil; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Neumann, G.; Bott, S.; Ohler, M.A.; Mock, H.P.; Lippmann, R.; Grosch, R.; Smalla, K. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 2014, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Xiao, J.; Li, Y.; Chen, Z.; Cheng, X.; Zhao, C.; Liu, Q. Warming effects on root morphological and physiological traits: The potential consequences on soil C dynamics as altered root exudation. Agric. For. Meteorol. 2013, 180, 287–296. [Google Scholar] [CrossRef]
- Majdi, H.; Öhrvik, J. Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Glob. Chang. Biol. 2004, 10, 182–188. [Google Scholar] [CrossRef]
- Bai, W.; Wan, S.; Niu, S.; Liu, W.; Chen, Q.; Wang, Q.; Zhang, W.; Han, X.; Li, L. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Glob. Chang. Biol. 2010, 16, 1306–1316. [Google Scholar] [CrossRef]
- Uselman, S.M.; Qualls, R.G.; Thomas, R.B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant Soil 2000, 222, 191–202. [Google Scholar] [CrossRef]
- Stovall, J.P.; Seiler, J.R.; Fox, T.R. Respiratory C fluxes and root exudation differ in two full-sib clones of Pinus taeda (L.) under contrasting fertilizer regimes in a greenhouse. Plant Soil 2012, 363, 257–271. [Google Scholar] [CrossRef]
- Meharg, A.; Killham, K. The effect of soil pH on rhizosphere carbon flow of Lolium perenne. Plant Soil 1990, 123, 1–7. [Google Scholar] [CrossRef]
- Ataka, M.; Sun, L.; Nakaji, T.; Katayama, A.; Hiura, T. Five-year nitrogen addition affects fine root exudation and its correlation with root respiration in a dominant species, Quercus crispula, of a cool temperate forest, Japan. Tree Physiol. 2020, 40, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, K.; Xie, X.; Kusumoto, D.; Sekimoto, H.; Sugimoto, Y.; Takeuchi, Y.; Yoneyama, K. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 2007, 227, 125–132. [Google Scholar] [CrossRef]
- Meier, I.C.; Tuckmantel, T.; Heitkotter, J.; Muller, K.; Preusser, S.; Wrobel, T.J.; Kandeler, E.; Marschner, B.; Leuschner, C. Root exudation of mature beech forests across a nutrient availability gradient: The role of root morphology and fungal activity. New Phytol. 2020, 226, 583–594. [Google Scholar] [CrossRef]
- Zwetsloot, M.J.; Kessler, A.; Bauerle, T.L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 2018, 218, 530–541. [Google Scholar] [CrossRef] [Green Version]
- Xiong, D.; Huang, J.; Yang, Z.; Cai, Y.; Yang, Y. The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand. For. Ecol. Manag. 2020, 458, 117793. [Google Scholar] [CrossRef]
- Wasaki, J.; Rothe, A.; Kania, A.; Neumann, G.; Romheld, V.; Shinano, T.; Osaki, M.; Kandeler, E. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. J. Environ. Qual. 2005, 34, 2157–2166. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiao, M.; Li, D.; Yin, H.; Liu, Q. Do warming-induced changes in quantity and stoichiometry of root exudation promote soil N transformations via stimulation of soil nitrifiers, denitrifiers and ammonifiers? Eur. J. Soil Biol. 2016, 74, 60–68. [Google Scholar] [CrossRef]
- Phillips, R.P.; Erlitz, Y.; Bier, R.; Bernhardt, E.S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 2008, 22, 990–999. [Google Scholar] [CrossRef]
- Shidan, B. Analysis Soil and Agricultural Chemistry, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 74–76. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Han, W.X.; Fang, J.Y.; Reich, P.B.; Ian Woodward, F.; Wang, Z.H. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 2011, 14, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, C.; Teng, M.; Zhou, Z.; Wang, P. Net Primary Productivity of Pinus massoniana Dependence on Climate, Soil and Forest Characteristics. Forests 2020, 11, 404. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, F.A.; Bader, N.E.; Johnson, D.W.; Cheng, W. Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability? Soil Biol. Biochem. 2009, 41, 1080–1087. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; PeÑuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef] [Green Version]
- Sigdel, S.R.; Dawadi, B.; Camarero, J.J.; Liang, E.; Leavitt, S.W. Moisture-Limited Tree Growth for a Subtropical Himalayan Conifer Forest in Western Nepal. Forests 2018, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Valiente, J.A.; Lopez, R.; Hipp, A.L.; Aranda, I. Correlated evolution of morphology, gas exchange, growth rates and hydraulics as a response to precipitation and temperature regimes in oaks (Quercus). New Phytol. 2020, 227, 794–809. [Google Scholar] [CrossRef] [PubMed]
- Tateno, R.; Fukushima, K.; Fujimaki, R.; Shimamura, T.; Ohgi, M.; Arai, H.; Ohte, N.; Tokuchi, N.; Yoshioka, T. Biomass allocation and nitrogen limitation in a Cryptomeria japonicain plantation chronosequence. J. For. Res. 2017, 14, 276–285. [Google Scholar]
- Hishi, T.; Tateno, R.; Fukushima, K.; Fujimaki, R.; Itoh, M.; Tokuchi, N.; Näsholm, T. Changes in the anatomy, morphology and mycorrhizal infection of fine root systems of Cryptomeria japonicain relation to stand ageing. Tree Physiol. 2016, 37, 61–70. [Google Scholar]
- Ahonen-Jonnarth, U.; Hees, P.A.W.V.; Lundström, U.S.; Finlay, R.D. Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol. 2010, 146, 557–567. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Houlton, B.Z.; Smith, W.K.; Marklein, A.R.; Reed, S.C.; Parton, W.; Del Grosso, S.J.; Running, S.W. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl. Acad. Sci. USA 2013, 110, 12733–12737. [Google Scholar] [CrossRef] [Green Version]
- Aitkenhead-Peterson, J.A.; Kalbitz, K. Short-term response on the quantity and quality of rhizo-deposited carbon from Norway spruce exposed to low and high N inputs. J. Plant Nutr. Soil Sci. 2005, 168, 687–693. [Google Scholar] [CrossRef]
- Phillips, R.P.; Bernhardt, E.S.; Schlesinger, W.H. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol. 2009, 29, 1513–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, M.; Xiao, J.; Yin, H.; Pu, X.; Yue, B.; Liu, Q. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation. Chem. Ecol. 2014, 30, 555–565. [Google Scholar] [CrossRef]
- Vanhees, P.; Jones, D.; Jentschke, G.; Godbold, D. Organic acid concentrations in soil solution: Effects of young coniferous trees and ectomycorrhizal fungi. Soil Biol. Biochem. 2005, 37, 771–776. [Google Scholar] [CrossRef]
- Arvieu, J.C.; Leprince, F.; Plassard, C. Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Ann. For. Sci. 2003, 60, 815–821. [Google Scholar] [CrossRef]
- Johansson, E.M.; Fransson, P.M.A.; Finlay, R.D.; Van Hees, P.A.W. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biol. Biochem. 2009, 41, 1111–1116. [Google Scholar] [CrossRef]
- Ohta, T.; Niwa, S.; Hiura, T. Geographical variation in Japanese cedar shapes soil nutrient dynamics and invertebrate community. Plant Soil 2019, 437, 355–373. [Google Scholar] [CrossRef]
- Zhang, H.Q.; An, L.J.; Zu, Y.G. Geographical variation of morphology characters for natural populations of Pinus koraiensis. Acta Ecol. Sin. 1999, 19, 932–938. [Google Scholar]
- Zhang, L.; Zhang, H.G.; Li, X.F. Analysis of genetic diversity in Larix gmelinii (Pinaceae) with RAPD and ISSR markers. Genet. Mol. Res. 2013, 12, 196–207. [Google Scholar] [CrossRef]
Site | Latitude (°) | Longitude (°) | MAT (°C) | MAP (mm) |
---|---|---|---|---|
CHK | 40.86 | 123.86 | 5.92 | 835.89 |
LSH | 42.55 | 127.62 | 3.21 | 783.62 |
LS | 47.18 | 128.89 | −0.31 | 588.00 |
Site | Tree Species | Age (a) | Average DBH (cm) | Density (Plant hm−2) | Slope (°) | Altitude (m) | Soil Type |
---|---|---|---|---|---|---|---|
CHK | Korean pine | 40 | 29.29 | 4400 | 25 | 300 | Dark brown |
Larch | 30 | 23.57 | 4400 | 21 | 300 | Dark brown | |
White birch | 30 | 14.66 | 4400 | 25 | 300 | Dark brown | |
LSH | Korean pine | 23 | 17.96 | 4400 | 1 | 850 | Dark brown |
Larch | 25 | 20.21 | 4400 | 1 | 850 | Dark brown | |
White birch | 31 | 16.30 | 4400 | 1 | 850 | Dark brown | |
LS | Korean pine | 64 | 20.66 | 4400 | 5 | 403 | Dark brown |
Larch | 64 | 26.02 | 4400 | 3 | 403 | Dark brown | |
White birch | 60 | 18.00 | 4400 | 5 | 403 | Dark brown |
Effect | Root Exudation Rate | SRL | SRA | SRT | TOC | TN | TP | PH |
---|---|---|---|---|---|---|---|---|
S | 0.027 | 0.017 | 0.203 | 0.323 | <0.001 | <0.001 | 0.011 | <0.001 |
TS | 0.006 | <0.001 | <0.001 | <0.001 | <0.001 | 0.389 | 0.093 | <0.001 |
S×TS | 0.002 | 0.065 | 0.089 | 0.675 | <0.001 | 0.035 | 0.186 | <0.001 |
Species | Parameter | SRL | SRT | TOC | TN | TP | pH | MAT | MAP |
---|---|---|---|---|---|---|---|---|---|
All species | R | −0.136 | −0.053 | −0.379 | −0.048 | −0.239 | −0.236 | 0.443 | 0.443 |
P | 0.326 | 0.704 | 0.005 | 0.732 | 0.082 | 0.086 | 0.001 | 0.001 | |
Korean pine | R | −0.368 | −0.406 | −0.471 | 0.140 | −0.550 | −0.307 | 0.525 | 0.525 |
P | 0.132 | 0.095 | 0.049 | 0.581 | 0.018 | 0.215 | 0.025 | 0.025 | |
Larch | R | 0.324 | 0.278 | −0.673 | 0.047 | −0.180 | −0.266 | 0.637 | 0.637 |
P | 0.190 | 0.264 | 0.002 | 0.854 | 0.476 | 0.286 | 0.004 | 0.004 | |
White birch | R | −0.610 | −0.335 | −0.371 | −0.508 | −0.041 | −0.166 | 0.302 | 0.302 |
P | 0.007 | 0.175 | 0.130 | 0.031 | 0.871 | 0.509 | 0.224 | 0.224 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wang, X.; Mao, Z.; Jiang, Z.; Gao, Y.; Chen, X.; Aubrey, D.P. Root Exudation Rates Decrease with Increasing Latitude in Some Tree Species. Forests 2020, 11, 1045. https://doi.org/10.3390/f11101045
Yang L, Wang X, Mao Z, Jiang Z, Gao Y, Chen X, Aubrey DP. Root Exudation Rates Decrease with Increasing Latitude in Some Tree Species. Forests. 2020; 11(10):1045. https://doi.org/10.3390/f11101045
Chicago/Turabian StyleYang, Liu, Xiuwei Wang, Zijun Mao, Zhiyan Jiang, Yang Gao, Xiangwei Chen, and Doug P. Aubrey. 2020. "Root Exudation Rates Decrease with Increasing Latitude in Some Tree Species" Forests 11, no. 10: 1045. https://doi.org/10.3390/f11101045
APA StyleYang, L., Wang, X., Mao, Z., Jiang, Z., Gao, Y., Chen, X., & Aubrey, D. P. (2020). Root Exudation Rates Decrease with Increasing Latitude in Some Tree Species. Forests, 11(10), 1045. https://doi.org/10.3390/f11101045