Leaf and Stem Traits are Linked to Liana Growth Rate in a Subtropical Cloud Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Relative Growth Rate of Lianas
2.3. Leaf and Stem Traits
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Poorter, L.; Wright, S.J.; Paz, H.; Ackerly, D.D.; Condit, R.; Ibarra-Manríquez, G.; Harms, K.E.; Licona, J.C.; Martínez-Ramos, M.; Mazer, S.J.; et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 2008, 89, 1908–1920. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Kohyama, T.S.; Swenson, N.G.; Su, S.H.; Chen, C.T.; Chiang, J.M.; Sun, I.F. Linking functional traits and demographic rates in a subtropical tree community: The importance of size dependency. J. Ecol. 2014, 102, 641–650. [Google Scholar] [CrossRef]
- Liu, X.; Swenson, N.G.; Lin, D.; Mi, X.; Umaña, M.N.; Schmid, B.; Ma, K. Linking individual-level functional traits to tree growth in a subtropical forest. Ecology 2016, 97, 2396–2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, E.F.; Wright, I.J.; Falster, D.S.; Eller, A.S.; Lehmann, C.E.R.; Bradford, M.G.; Cernusak, L.A. Leaf: Wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. AoB Plants 2019, 11, plz024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, S.J.; Kitajima, K.; Kraft, N.J.; Reich, P.B.; Wright, I.J.; Bunker, D.E.; Condit, R.; Dalling, J.W.; Davies, S.J.; Diaz, S.; et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 2010, 91, 3664–3674. [Google Scholar] [CrossRef]
- Fan, Z.X.; Zhang, S.B.; Hao, G.Y.; Slik, J.W.F.; Cao, K.F. Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. J. Ecol. 2012, 100, 732–741. [Google Scholar] [CrossRef]
- Poorter, L.; Castilho, C.V.; Schietti, J.; Oliveira, R.S.; Costa, F.R. Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New Phytol. 2018, 219, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Putz, F.E. Liana stem diameter growth and mortality rates on Barro Colorado Island, Panama. Biotropica 1990, 22, 103–105. [Google Scholar] [CrossRef]
- Roeder, M.; Liu, J.; Pasion, B.; Yasuda, M.; Slik, J.F.; Tomlinson, K.W. Wood density, growth and mortality relationships of lianas on environmental gradients in fragmented forests of montane landscapes. J. Veg. Sci. 2019, 30, 1143–1152. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Mencuccini, M.; Vayreda, J.; Retana, J. Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. J. Ecol. 2010, 98, 1462–1475. [Google Scholar] [CrossRef]
- Iida, Y.; Sun, I.F.; Price, C.A.; Chen, C.T.; Chen, Z.S.; Chiang, J.M.; Huang, C.L.; Swenson, N.G. Linking leaf veins to growth and mortality rates: An example from a subtropical tree community. Ecol. Evol. 2016, 6, 6085–6096. [Google Scholar] [CrossRef]
- Bongers, F.J.; Schmid, B.; Sun, Z.; Li, Y.; Härdtle, W.; von Oheimb, G.; Li, Y.; Li, S.; Staab, M.; Ma, K.P.; et al. Growth–trait relationships in subtropical forest are stronger at higher diversity. J. Ecol. 2020, 108, 256–266. [Google Scholar] [CrossRef]
- Yin, Q.; Tian, T.; Han, X.; Xu, J.; Chai, Y.; Mo, J.; Lei, M.L.; Wang, L.; Wang, L. The relationships between biomass allocation and plant functional trait. Ecol. Indic. 2019, 102, 302–308. [Google Scholar] [CrossRef]
- Guimarães, Z.T.M.; Dos Santos, V.A.H.F.; Nogueira, W.L.P.; de Almeida Martins, N.O.; Ferreira, M.J. Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area. For. Ecol. Manag. 2018, 430, 618–628. [Google Scholar] [CrossRef]
- Avalos, G.; Mulkey, S. Seasonal changes in liana cover in the upper canopy of a neotropical dry forest. Biotropica 1999, 31, 186–192. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 1998. [Google Scholar]
- Zhang, Y.J.; Cao, K.F.; Sack, L.; Li, N.; Wei, X.M.; Goldstein, G. Extending the generality of leaf economic design principles in the cycads, an ancient lineage. New Phytol. 2015, 206, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Field, C.; Mooney, H.A. The photosynthesis-nitrogen relationship in wild plants. In On the Economy of Plant Form and Function; Givnish, T.J., Ed.; Cambridge University Press: Cambridge, UK, 1986; pp. 25–55. [Google Scholar]
- Roelfsema, M.R.G.; Hedrich, R. In the light of stomatal opening: New insights into ‘the Watergate’. New Phytol. 2005, 167, 665–691. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Cai, Z.; Schnitzer, S.A.; Bongers, F. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 2009, 161, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Cao, K.F. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. Funct. Ecol. 2009, 23, 658–667. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Harguindeguy, N.; Diaz, S.; Gamier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Zhu, S.D.; Cao, K.F. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol. 2009, 204, 295–304. [Google Scholar] [CrossRef]
- Hietz, P.; Rosner, S.; Hietz-Seifert, U.; Wright, S.J. Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol. 2017, 213, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Brodribb, T.J.; Holbrook, N.M.; Gutierrez, M.V. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ. 2002, 25, 1435–1444. [Google Scholar] [CrossRef] [Green Version]
- Meinzer, F.C.; McCulloh, K.A.; Lachenbruch, B.; Woodruff, D.R.; Johnson, D.M. The blind men and the elephant: The impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 2010, 164, 287–296. [Google Scholar] [CrossRef]
- Enquist, B.J.; West, G.B.; Charnov, E.L.; Brown, J.H. Allometric scaling of production and life-history variation in vascular plants. Nature 1999, 401, 907–911. [Google Scholar] [CrossRef]
- Putz, F.E. Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro Basin, Venezuela. Biotropica 1983, 15, 185–189. [Google Scholar] [CrossRef]
- Gentry, A.H. Distribution and evolution of climbing plants. In Biology of Vines; Putz, F.E., Mooney, H.A., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 3–49. [Google Scholar]
- Schnitzer, S.A.; Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 2002, 17, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Phillips, O.L.; Vásquez Martínez, R.; Monteagudo Mendoza, A.; Baker, T.R.; Núñez Vargas, P. Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 2005, 86, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Durán, S.M.; Gianoli, E. Carbon stocks in tropical forests decrease with liana density. Biol. Lett. 2013, 9, 20130301. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y. Vegetation of China; Science Press: Beijing, China, 1980. [Google Scholar]
- Yuan, C.M.; Liu, W.Y.; Tang, C.Q.; Li, X.S. Species composition, diversity, and abundance of lianas in different secondary and primary forests in a subtropical mountainous area, SW China. Ecol. Res. 2009, 24, 1361–1370. [Google Scholar] [CrossRef]
- Eamus, D. Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol. Evol. 1999, 14, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.L.; Jiang, Y.J.; Wang, A.Y.; Brodribb, T.J.; Zhang, J.L.; Zhu, S.D.; Cao, K.F. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann. Bot. 2012, 110, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Yang, Q.Y.; Lee, D.W.; Goldstein, G.; Cao, K.F. Extended leaf senescence promotes carbon gain and nutrient resorption: Importance of maintaining winter photosynthesis in subtropical forests. Oecologia 2013, 173, 721–730. [Google Scholar] [CrossRef]
- Drollinger, S.; Müller, M.; Kobl, T.; Schwab, N.; Böhner, J.; Schickhoff, U.; Scholten, T. Decreasing nutrient concentrations in soils and trees with increasing elevation across a treeline ecotone in Rolwaling Himal, Nepal. J. Mt. Sci. 2017, 14, 843–858. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, M. Linkages of C:N:P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. J. Soils Sed. 2019, 19, 1820–1829. [Google Scholar] [CrossRef]
- Wen, H.D.; Lin, L.X.; Yang, J.; Hu, Y.H.; Cao, M.; Liu, Y.H.; Lu, Z.Y.; Xie, Y.N. Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China. Chin. J. Plant Ecol. 2018, 42, 419–429. (In Chinese) [Google Scholar]
- Gerwing, J.J.; Schnitzer, S.A.; Burnham, R.J.; Bongers, F.; Chave, J.; DeWalt, S.J.; Ewango, C.E.N.; Foster, R.; Kenfack, D.; Martinez-Ramos, M.; et al. A standard protocol for liana censuses. Biotropica 2006, 38, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, S.A.; Rutishauser, S.; Aguilar, S. Supplemental protocol for liana censuses. For. Ecol. Manag. 2008, 255, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, S.A.; Carson, W.P. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 2001, 82, 913–919. [Google Scholar] [CrossRef]
- Shanmughavel, P.; Zheng, Z.; Liqing, S.; Min, C. Floristic structure and biomass distribution of a tropical seasonal rain forest in Xishuangbanna, southwest China. Biomass Bioenergy 2001, 21, 165–175. [Google Scholar] [CrossRef]
- Gehring, C.; Park, S.; Denich, M. Liana allometric biomass equations for Amazonian primary and secondary forest. For. Ecol. Manag. 2004, 195, 69–83. [Google Scholar] [CrossRef]
- Lü, X.T.; Tang, J.W.; Feng, Z.L.; Li, M.H. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China. Rev. Biol. Trop. 2009, 57, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Warman, L.; Moles, A.T.; Edwards, W. Not so simple after all: Searching for ecological advantages of compound leaves. Oikos 2011, 120, 813–821. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Lewis, A.M. Measuring the hydraulic diameter of a pore or conduit. Am. J. Bot. 1992, 79, 1158–1161. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Ma, K.; Bongers, F.; Sterck, F.J. Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits. Tree Physiol. 2019, 39, 1713–1724. [Google Scholar] [CrossRef]
- Tyree, M.T.; Ewers, F.W. The hydraulic architecture of trees and other woody plants. New Phytol. 1991, 119, 345–360. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Diez, P.C.; Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 1996, 755–765. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Castro-Diez, P.; Carnelli, A.L. Variation in relative growth rate among woody species. In Inherent Variation in Plant Growth: Physiological Mechanisms and Ecological Consequences; Lambers, H., Poorter, H., van Vuuren, M., Eds.; Backhuys: Leiden, The Netherlands, 1998; pp. 363–392. [Google Scholar]
- Antúnez, I.; Retamosa, E.C.; Villar, R. Relative growth rate in phylogenetically related deciduous and evergreen woody species. Oecologia 2001, 128, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Tang, Z.; Xie, Z.; Guo, Q.; Zhang, M.; Ge, J.; Xiong, G.M.; Fang, J.Y. Effects of size, neighbors, and site condition on tree growth in a subtropical evergreen and deciduous broad-leaved mixed forest, China. Ecol. Evol. 2015, 5, 5149–5161. [Google Scholar] [CrossRef] [PubMed]
- Lusk, C.H. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oecologia 2002, 132, 188–196. [Google Scholar] [CrossRef]
- Baribault, T.W.; Kobe, R.K.; Finley, A.O. Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecol. Monogr. 2012, 82, 189–203. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S., III. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res. 1999, 30, 1–67. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Castro, K.; Wright, S.J.; Gamon, J.; Kalacska, M.; Rivard, B.; Schnitzer, S.A.; Feng, J.L. Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: Implications for remote sensing in tropical environments. Remote Sens. Environ. 2009, 113, 2076–2088. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.G.; Wright, S.J.; Wurzburger, N. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia 2016, 180, 1037–1047. [Google Scholar] [CrossRef]
- Lambers, H.; Poorter, H. Inherent variation in growth rate between higher plants; a search for physiological causes and ecological consequences. Adv. Ecol. Res. 1992, 23, 188–242. [Google Scholar] [CrossRef]
- Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 2006, 20, 565–574. [Google Scholar] [CrossRef]
- Reich, P.B.; Uhl, C.; Walters, M.B.; Ellsworth, D.S. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 1991, 86, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; Feild, T.S.; Jordan, G.J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 2007, 144, 1890–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, K.; Jiang, D.; Cao, K.; Wan, X.; Liao, D. Photosynthetic response to seasonal temperature changes in evergreen and deciduous broad-leaved trees in montane forests of Ailao mountain and Maoer mountain. Acta Ecol. Sin. 2010, 30, 905–913. [Google Scholar]
Parameter | Sunny Days (d) | Cloudy Days (d) | Foggy Days (d) | Rainy Days (d) | Rainfall (mm) | Temperature (°C) |
---|---|---|---|---|---|---|
Mean annual | 82.7 | 282 | 230.7 | 162.7 | 2053.4 | 11.7 |
Rainy season mean (May–October) | 11.0 | 172.3 | 150.7 | 125.3 | 1873.4 | 14.8 |
Dry season mean (November–April) | 71.7 | 109.7 | 80.0 | 37.3 | 166.2 | 8.7 |
Species | Family | Code | n | Phenology |
---|---|---|---|---|
Rubus paniculatus Smith | Rosaceae | Rp | 309 | D |
Actinidia callosa Lindl. | Actinidiaceae | Ac | 308 | D |
Celastrus hookeri Prain | Celastraceae | Cho | 303 | D |
Parthenocissus semicordata (Wall.) Planch. | Vitaceae | Ps | 236 | D # |
Celastrus hirsutus Comber | Celastraceae | Chi | 235 | D |
Sabia yunnanensis Franch. | Sabiaceae | Sy | 115 | D |
Actinidia glaucocallosa C. Y. Wu | Actinidiaceae | Ag | 88 | D |
Rosa longicuspis Bertol. | Rosaceae | Rl | 870 | E # |
Holboellia latifolia Wall. | Lardizabalaceae | Hl | 253 | E # |
Kadsura heteroclita (Roxb.) Craib | Schisandraceae | Kh | 79 | E |
Callerya dielsiana (Harms) P. K. Loc ex Z. Wei and Pedley | Leguminosae | Cd | 64 | E # |
Total | 2860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.-L.; Zhang, Y.-B.; Liu, Q.; Wang, Y.-S.-D.; Yang, D.; Zhang, J.-L. Leaf and Stem Traits are Linked to Liana Growth Rate in a Subtropical Cloud Forest. Forests 2020, 11, 1120. https://doi.org/10.3390/f11101120
Bai X-L, Zhang Y-B, Liu Q, Wang Y-S-D, Yang D, Zhang J-L. Leaf and Stem Traits are Linked to Liana Growth Rate in a Subtropical Cloud Forest. Forests. 2020; 11(10):1120. https://doi.org/10.3390/f11101120
Chicago/Turabian StyleBai, Xiao-Long, Yun-Bing Zhang, Qi Liu, Yang-Si-Ding Wang, Da Yang, and Jiao-Lin Zhang. 2020. "Leaf and Stem Traits are Linked to Liana Growth Rate in a Subtropical Cloud Forest" Forests 11, no. 10: 1120. https://doi.org/10.3390/f11101120
APA StyleBai, X. -L., Zhang, Y. -B., Liu, Q., Wang, Y. -S. -D., Yang, D., & Zhang, J. -L. (2020). Leaf and Stem Traits are Linked to Liana Growth Rate in a Subtropical Cloud Forest. Forests, 11(10), 1120. https://doi.org/10.3390/f11101120