Dimensional Stability of Waterlogged Scots Pine Wood Treated with PEG and Dried Using an Alternative Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. PEG Impregnation
2.3. Drying
2.4. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
2.5. Equilibrium Moisture Content and Dimensional Stability
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of Wood
3.2. Equilibrium Moisture Content and Dimensional Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schweingruber, F.H. Tree Rings—Basics and Applications of Dendrochronology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; ISBN 978-0-7923-0559-0. [Google Scholar] [CrossRef]
- Ważny, J. The present classification of wood degradation factors. Folia For. Pol. Ser. B 1993, 24, 13–22. [Google Scholar]
- Rowell, R.M.; Barbour, R.J. Archaeological Wood: Properties, Chemistry, and Preservation; American Chemical Society: Washington, DC, USA, 1989; Volume 225, ISBN 0-8412-1623-1. [Google Scholar]
- Blanchette, R.A. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Grattan, D.W.; McCawley, J.C.; Cook, C. The potential of the Canadian winter climate for the freeze-drying of degraded waterlogged wood: Part II. Stud. Conserv. 1980, 25, 118–136. [Google Scholar] [CrossRef]
- Hoffmann, P. Conservation of Archeological Ships and Boats; Archetype Publications Ltd.: London, UK, 2013; ISBN 9781904982821. [Google Scholar]
- Håfors, B. Conservation of the Wood of the Swedish Warship Vasa of A.D. 1628: Evaluation of Polyethylene Glycol Conservation Programmes. In Göteborg Studies in Conservation; University of Gothenburg, Acta Universitatis Gothoburgensis: Göteborg, Sweden, 2010; ISBN 978-91-7346-687-5. [Google Scholar]
- Interactive HTML5 Flipping Book Publishing Platform; Your Universally Applicable Polymer, Clariant 2007. Available online: https://anyflip.com/rwuf/fuly (accessed on 25 November 2020).
- Hoffmann, P. On the Stabilization of Waterlogged Oakwood with Polyethylene Glycol (PEG). Holzforschung 1988, 42, 289–294. [Google Scholar] [CrossRef]
- Schnell, U.; Jensen, P. Determination of Maximum Freeze Drying Temperature for PEG-Impregnated Archaeological Wood. Stud. Conserv. 2014, 52, 50–58. [Google Scholar] [CrossRef]
- Grattan, D.W.; Clarke, R.W. Conservation of waterlogged wood. In Conservation of Marine Archaeological Objects; Pearson, C., Ed.; Butterworth & Co. Ltd.: London, UK, 1987; pp. 164–206. ISBN 0-408-10668-9. [Google Scholar]
- Jensen, P.; Gregory, D.J. Selected physical parameters to characterize the state of preservation of waterlogged archaeological wood: A practical guide for their determination. J. Archaeol. Sci. 2006, 33, 551–559. [Google Scholar] [CrossRef]
- Giachi, G.; Capretti, C.; Donato, I.D.; Macchioni, N.; Pizzo, B. New trials in the consolidation of waterlogged archaeological wood with different acetone-carried products. J. Archaeol. Sci. 2011, 38, 2957–2967. [Google Scholar] [CrossRef]
- De Jong, J.; Eenkhoorn, W.; Wevers, A.J.M. Controlled Drying as an Approach to the Conservation of Shipwrecks. In Proceedings of the 6th Triennial Meeting ICOM Committee for Conservation, Ottawa, ON, Canada, 21–25 September 1981; pp. 1–10. [Google Scholar]
- Welling, J.; Schwarz, T.; Bauch, J. Biological, chemical and technological characteristics of waterlogged archaeological piles (Quercus petraea (Matt.) Liebl.) of a medieval bridge foundation in Bavaria. Eur. J. Wood Wood Prod. 2018, 76, 1173–1186. [Google Scholar] [CrossRef]
- Majka, J.; Zborowska, M.; Fejfer, M.; Waliszewska, B.; Olek, W. Dimensional stability and hygroscopic properties of PEG treated irregularly degraded waterlogged Scots pine wood. J. Cult. Herit. 2018, 31, 133–140. [Google Scholar] [CrossRef]
- Jensen, P.; Hjelm Petersen, A.; Strætkvern, K. From the Skuldelev to the Roskilde ships—50 years of shipwreck conservation at the national museum of Denmark. In Shipwrecks 2011, Proceedings of the Chemistry and Preservation of Waterlogged Wooden Shipwrecks, Stokholm, Sweden, 18–21 October 2011; Ek, M., Ed.; Vasa Museum: Stokholm, Sweden, 2011; pp. 14–20. [Google Scholar]
- Schmidt-Reimann, P.; Reuter, T. Conservation and 3D-documentation of waterlogged wood from medieval mining. Condition 2015, 125. [Google Scholar]
- Majka, J.; Czajkowski, Ł.; Olek, W. Effects of Cyclic Changes in Relative Humidity on the Sorption Hysteresis of Thermally Modified Spruce Wood. BioResources 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J. Appl. Polym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- Kollmann, F.F.; Côté, W.A. Principles of Wood Science and Technology. I Solid Wood; Springer: Berlin/Heidelberg, Germany, 1968; ISBN 978-3-642-87930-2. [Google Scholar]
- Skaar, C. Wood-Water Relations; Springer: Berlin, Germany; New York, NY, USA, 1988; ISBN 0-387-19258-1. [Google Scholar]
- Rowell, R.M. Moisture properties. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 75–98. ISBN 9781439853818. [Google Scholar]
- Faix, O. Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Gelbrich, J.; Mai, C.; Militz, H. Chemical changes in wood degraded by bacteria. Int. Biodeterior. Biodegrad. 2008, 61, 24–32. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Chao, Y.; Nawawi, D.S.; Akiyama, T.; Yokoyama, T.; Matsumoto, Y. Analysis of lignin aromatic structure in wood based on the IR spectrum. J. Wood Chem. Technol. 2012, 32, 294–303. [Google Scholar] [CrossRef]
- Pandey, K.K. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Pizzo, B.; Pecoraro, E.; Macchioni, N. A new method to quantitatively evaluate the chemical composition of waterlogged wood by means of attenuated total reflectance Fourier transform infrared (ATR FT-IR) measurements carried out on wet material. Appl. Spectrosc. 2013, 67, 553–562. [Google Scholar] [CrossRef]
- Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. The effects of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Sci. Technol. 2003, 37, 109–115. [Google Scholar] [CrossRef]
- Beltran, V.; Salvadó, N.; Butí, S.; Pradell, T. Ageing of resin from Pinus species assessed by infrared spectroscopy. Anal. Bioanal. Chem. 2016, 408, 4073–4082. [Google Scholar] [CrossRef] [Green Version]
- Font, J.; Salvadó, N.; Butí, S.; Enrich, J. Fourier transform infrared spectroscopy as a suitable technique in the study of the materials used in waterproofing of archaeological amphorae. Anal. Chim. Acta 2007, 598, 119–127. [Google Scholar] [CrossRef]
- Esteban, L.G.; De Palacios, P.; Fernández, F.G.; Guindeo, A.; Conde, M.; Baonza, V. Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 2008, 62, 745–751. [Google Scholar] [CrossRef]
- Esteban, L.G.; de Palacios, P.; García Fernández, F.; García-Amorena, I. Effects of burial of Quercus spp. wood aged 5910±250BP on sorption and thermodynamic properties. Int. Biodeterior. Biodegrad. 2010, 64, 371–377. [Google Scholar] [CrossRef]
- García-Iruela, A.; García Esteban, L.; García Fernández, F.; de Palacios, P.; Rodriguez-Navarro, A.B.; Gil Sánchez, L.; Hosseinpourpia, R. Effect of Degradation on Wood Hygroscopicity: The Case of a 400-Year-Old Effect of Degradation on Wood Hygroscopicity: The Case of a 400-Year-Old Coffin. Forests 2020, 11, 712. [Google Scholar] [CrossRef]
- Han, L.; Guo, J.; Wang, K.; Grönquist, P.; Li, R.; Tian, X.; Yin, Y. Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State. Polymers 2020, 12, 834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgos, A.; Imazu, S. Comparing conservation methods for waterlogged wood using sucrose, mannitol and their mixture. In Proceedings of the 5th ICOM Group on Wet Organic Archaeological Materials Conference, Portland, Maine, 16–20 August 1993; International Council of Museums, Hoffmann, P., Eds.; Dt. Schiffahrtsmuseum: Bremerhaven, Germany, 1994; pp. 287–299. [Google Scholar]
- Tanaka, S.; Seki, M.; Miki, T.; Shigematsu, I.; Kanayama, K. Solute diffusion into cell walls in solution-impregnated wood under conditioning process I: Effect of relative humidity on solute diffusivity. J. Wood Sci. 2015, 61, 543–551. [Google Scholar] [CrossRef]
- Tarkow, H.; Feist, W.; Southerland, C. Interaction of wood with polymeric materials. Penetration versus molecular size. Prod. J. 1966, 16, 61–65. [Google Scholar]
Effect | SS | df | MS | F Value | p-Value | |
---|---|---|---|---|---|---|
EMC | Intercept | 368.56 | 1 | 368.56 | 19,775.1 | 0.0000 |
Impregnation (a) | 60.411 | 2 | 30.206 | 1620.69 | 0.0000 | |
Drying schedule (b) | 4.8330 | 1 | 4.8330 | 259.32 | 0.0000 | |
a × b | 2.7852 | 2 | 1.3926 | 74.721 | 0.0000 | |
Error | 0.3355 | 18 | 0.0186 | |||
ST | Intercept | 223.99 | 1 | 223.99 | 1136.04 | 0.0000 |
Impregnation (a) | 40.683 | 2 | 20.341 | 103.17 | 0.0000 | |
Drying schedule (b) | 3.9204 | 1 | 3.9204 | 19.883 | 0.0003 | |
a × b | 21.138 | 2 | 10.569 | 53.604 | 0.0000 | |
Error | 3.5490 | 18 | 0.1972 | |||
SR | Intercept | 6.1712 | 1 | 6.1712 | 830.98 | 0.0000 |
Impregnation (a) | 5.3935 | 2 | 2.6968 | 363.13 | 0.0000 | |
Drying schedule (b) | 0.0084 | 1 | 0.0084 | 1.1362 | 0.3006 | |
a × b | 0.5021 | 2 | 0.2510 | 33.803 | 0.0000 | |
Error | 0.1337 | 18 | 0.0074 |
Effect | SS | df | MS | F Value | p-Value | |
---|---|---|---|---|---|---|
EMC | Intercept | 377.39 | 1 | 377.39 | 3981.0 | 0.00000 |
Impregnation (a) | 14.200 | 2 | 7.1000 | 74.895 | 0.00000 | |
Drying schedule (b) | 2.9190 | 1 | 2.9190 | 30.792 | 0.00003 | |
a × b | 1.1323 | 2 | 0.5661 | 5.9720 | 0.01025 | |
Error | 1.7064 | 18 | 0.0948 | |||
ST | Intercept | 234.44 | 1 | 234.44 | 6292.5 | 0.0000 |
Impregnation (a) | 105.78 | 2 | 52.890 | 1419.6 | 0.0000 | |
Drying schedule (b) | 0.1218 | 1 | 0.1218 | 3.2702 | 0.0873 | |
a × b | 0.0133 | 2 | 0.0067 | 0.1785 | 0.8380 | |
Error | 0.6706 | 18 | 0.0373 | |||
SR | Intercept | 25.979 | 1 | 25.979 | 1334.8 | 0.0000 |
Impregnation (a) | 23.286 | 2 | 11.643 | 598.23 | 0.0000 | |
Drying schedule (b) | 0.0165 | 1 | 0.0165 | 0.8497 | 0.3688 | |
a × b | 0.0556 | 2 | 0.0278 | 1.4277 | 0.2657 | |
Error | 0.3503 | 18 | 0.0195 |
Wood Samples | Treatment Options | Multi-Stage Drying Schedule | Single-Stage Drying Schedule | ||||
---|---|---|---|---|---|---|---|
EMC(%) | ST(%) | SR (%) | EMC (%) | ST (%) | SR (%) | ||
Sapwood (SW) | Untreated (control) | 7.1 ± 0.2 c | 5.3 ± 0.3 c | 1.3 ± 0.1 c | 5.2 ± 0.2 c | 4.5 ± 0.5 b | 1.1 ± 0.1 c |
PEG 400/4000 | 3.4 ± 0.1 b | 0.5 ± 0.1 a | −0.1 ± 0.1 b | 2.9 ± 0.1 b | 3.9 ± 0.8 b | 0.4 ± 0.1 b | |
PEG 2000 | 2.7 ± 0.1 a | 2.2 ± 0.4 b | 0.2 ± 0.1 a | 2.3 ± 0.1 a | 1.9 ± 0.2 a | 0.1 ± 0.1 a | |
Heartwood (HW) | Untreated (control) | 5.7 ± 0.5 b | 6.2 ± 0.3 b | 2.4 ± 0.2 b | 4.4 ± 0.4 b | 6.0 ± 0.2 b | 2.5 ± 0.1 b |
PEG 400/4000 | 3.5 ± 0.2 a | 1.6 ± 0.1 a | 0.3 ± 0.1 a | 3.3 ± 0.2 a | 1.5 ± 0.2 a | 0.3 ± 0.2 a | |
PEG 2000 | 3.7 ± 0.2 a | 1.8 ± 0.1 a | 0.5 ± 0.1 a | 3.2 ± 0.2 a | 1.6 ± 0.1 a | 0.3 ± 0.2 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fejfer, M.; Majka, J.; Zborowska, M. Dimensional Stability of Waterlogged Scots Pine Wood Treated with PEG and Dried Using an Alternative Approach. Forests 2020, 11, 1254. https://doi.org/10.3390/f11121254
Fejfer M, Majka J, Zborowska M. Dimensional Stability of Waterlogged Scots Pine Wood Treated with PEG and Dried Using an Alternative Approach. Forests. 2020; 11(12):1254. https://doi.org/10.3390/f11121254
Chicago/Turabian StyleFejfer, Mariusz, Jerzy Majka, and Magdalena Zborowska. 2020. "Dimensional Stability of Waterlogged Scots Pine Wood Treated with PEG and Dried Using an Alternative Approach" Forests 11, no. 12: 1254. https://doi.org/10.3390/f11121254
APA StyleFejfer, M., Majka, J., & Zborowska, M. (2020). Dimensional Stability of Waterlogged Scots Pine Wood Treated with PEG and Dried Using an Alternative Approach. Forests, 11(12), 1254. https://doi.org/10.3390/f11121254