Soils in Karst Sinkholes Record the Holocene History of Local Forest Fires at the North of European Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
- (1)
- in sinkhole Pin01–18 (N64.74635°, E43.38613°) with a flattened surface, peripheral slopes <10°, day surface Δ = 1 m, Ø 15 m, profile depth of 250 cm;
- (2)
- in sinkhole Pin02-18 (N64.74747°, E43.38674°) with steep peripheral slopes of 20–35°, day surface Δ = 5 m, Ø 25 m, profile depth of 120 cm;
- (3)
- in sinkhole Pin03-18 (N64.74696°, E43.38632°) with flattened surface, peripheral slopes <5°, day surface Δ = 0.5 m, Ø 10 m, profile depth of 140 cm.
- (1)
- Pin02-19 (N64.74739°, E43.38774°) with macroscopic charcoal buried due to the uprooting;
- (2)
- Pin04-19 (N64.74635°, E43.38613°) with no macroscopic signs of charcoal in the soil profile.
2.3. Dendrochronological Reconstruction
2.4. Charcoal and Soil Organic Matter Analyses
2.5. Radiocarbon Analyses
3. Results
3.1. Morphology of Pyrogenic Soil Archive
3.2. Anthracomass
3.2.1. Concentration
3.2.2. Botanical Identification
3.3. Carbon and Nitrogen in Soil and Charcoal
3.4. Carbon and Nitrogen Stable Isotope Ratio
3.5. Radiocarbon Data
3.6. Fire History in the 20th Century (Dendrochronological Detalization)
4. Discussion
4.1. Charcoal Burial in Sinkholes
4.2. Evaluation of the Sinkhole Archives as Paleofire Proxies
4.3. Local Paleofire Pattern in a Broader Context
5. Conclusions
- A significant long-term PyC sink is present in soils of the karst landscapes at the north of the Archangelsk Region, in Russia. Subsidence sinkholes contain well-preserved although very complicated soil records of the local pyrogenic events throughout most of the Holocene, as well as the data on the stages of soil formation during this period.
- The pyrogenic archives in sinkholes were formed and affected by an intricate interplay of subsidence, erosion-deposition, and uprooting events, and their maximum temporal “depth”, estimated from the radiocarbon dating of macrocharcoal that reached 10,260 ± 35 cal BP. 10 out of 37 radiocarbon determinations in a consecutive row exhibited distances of more than 200 cal BP between 2σ ranges (95.4% probability) of neighboring determinations. This is beyond a threshold of charcoal “inbuilt age” common to the tree species in the Holocene history of the region, thus reliably distinguishing between individual paleofires.
- The intervals between fires have shortened in the last 1000 years (macrocharcoal data), and during the 20th and early 21st centuries fires have occurred almost every decade (tree-ring data). However, the macrocharcoal paleofire proxies could be partially affected by the better quality of the recent material preserved in the soil, turbations, and the “inbuilt” effect of radiocarbon age should thus be complemented by other pyrogenic archives (e.g., in lake/peat sediments) for accurate interpretations.
- Soil formation with Podzols established at the inter-pyrogenic stages was reproduced within the ten-thousand-year period. The charcoal record of the three sampled sinkholes suggests that Pinus sp. was the dominant tree species across this period.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carcaillet, C.; Thinon, M. Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne Valley (North French Alps): Methodology and preliminary data. Rev. Palaeobot. Palynol. 1996, 91, 399–416. [Google Scholar] [CrossRef]
- Gavin, D.G. Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 2001, 43, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Gavin, D.G.; Brubaker, L.B.; Lertzman, K.P. Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 2003, 84, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Lertzman, K.; Gavin, D.; Hallett, D.; Brubaker, L.; Lepofsky, D.; Mathewes, R. Long-term fire regime estimated from soil charcoal in coastal temperate rainforests. Conserv. Ecol. 2002, 6, 1–13. Available online: https://www.jstor.org/stable/26271885 (accessed on 27 November 2020). [CrossRef]
- Talon, B. Reconstruction of Holocene high-altitude vegetation cover in the French southern Alps: Evidence from soil charcoal. Holocene 2010, 20, 35–44. [Google Scholar] [CrossRef]
- Talon, B.; Payette, S.; Filion, L.; Delwaide, A. Reconstruction of the long-term fire history of an old-growth deciduous forest in Southern Québec, Canada, from charred wood in mineral soils. Quat. Res. 2005, 64, 36–43. [Google Scholar] [CrossRef]
- Touflan, P.; Talon, B.; Walsh, K. Soil charcoal analysis: A reliable tool for spatially precise studies of past forest dynamics: A case study in the French southern Alps. Holocene 2010, 20, 45–52. [Google Scholar] [CrossRef]
- Novák, J.; Sádlo, J.; Svobodová-Svitavská, H. Unusual vegetation stability in a lowland pine forest area (Doksy region, Czech Republic). Holocene 2012, 22, 947–955. [Google Scholar] [CrossRef]
- Robin, V.; Nelle, O. Contribution to the reconstruction of central European fire history, based on the soil charcoal analysis of study sites in northern and central Germany. Veg. Hist. Archaeobot. 2014, 23, 51–65. [Google Scholar] [CrossRef]
- Robin, V.; Rickert, B.H.; Nadeau, M.J.; Nelle, O. Assessing Holocene vegetation and fire history by a multiproxy approach: The case of Stodthagen Forest (Northern Germany). Holocene 2012, 22, 337–346. [Google Scholar] [CrossRef]
- Compostella, C.; Trombino, L.; Caccianiga, M. Late Holocene soil evolution and treeline fluctuations in the Northern Apennines. Quat. Int. 2013, 289, 46–59. [Google Scholar] [CrossRef]
- Dyakonov, K.N.; Novenko, E.Y.; Mironenko, I.V.; Kuprijanov, D.A.; Bobrovsky, M.V. The role of fires in the Holocene landscape dynamics of the southeastern part of Meshchera Lowlands. Dokl. Earth Sci. 2017, 477, 1336–1342. [Google Scholar] [CrossRef]
- Bobrovsky, M.V.; Kupriaynov, D.A.; Khanina, L.G. Anthracological and morphological analysis of soils for the reconstruction of the forest ecosystem history (Meshchera Lowlands, Russia). Quat. Int. 2019, 516, 70–82. [Google Scholar] [CrossRef]
- Bird, M.I.; Wynn, J.G.; Saiz, G.; Wurster, C.M.; McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 273–298. [Google Scholar] [CrossRef]
- Reisser, M.; Purves, R.S.; Schmidt, M.W.; Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 2016, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.W.; Santín, C.; van der Werf, G.R.; Doerr, S.H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 2019, 12, 742–747. [Google Scholar] [CrossRef] [Green Version]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Abney, R.B.; Berhe, A.A. Pyrogenic carbon erosion: Implications for stock and persistence of pyrogenic carbon in soil. Front. Earth Sci. 2018, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat. Res. 1988, 30, 67–80. [Google Scholar] [CrossRef]
- Clark, J.S.; Lynch, J.; Stocks, B.J.; Goldammer, J.G. Relationships between charcoal particles in air and sediments in west-central Siberia. Holocene 1998, 8, 19–29. [Google Scholar] [CrossRef]
- Barhoumi, C.; Peyron, O.; Joannin, S.; Subetto, D.; Kryshen, A.; Drobyshev, I.; Girardin, M.P.; Brossier, B.; Paradis, L.; Pastor, T.; et al. Gradually increasing forest fire activity during the Holocene in the northern Ural region (Komi Republic, Russia). Holocene 2019, 29, 1906–1920. [Google Scholar] [CrossRef]
- Kupriyanov, D.A.; Novenko, E.Y. Reconstruction of the Holocene Dynamics of Forest Fires in the Central Part of Meshcherskaya Lowlands According to Antracological Analysis. Contemp. Probl. Ecol. 2019, 12, 204–212. [Google Scholar] [CrossRef]
- Magne, G.; Brossier, B.; Gandouin, E.; Paradis, L.; Drobyshev, I.; Kryshen, A.; Hély, C.; Alleaume, S.; Ali, A.A. Lacustrine charcoal peaks provide an accurate record of surface wildfires in a North European boreal forest. Holocene 2019, 30, 380–388. [Google Scholar] [CrossRef]
- Ohlson, M.; Tryterud, E. Interpretation of the charcoal record in forest soils: Forest fires and their production and deposition of macroscopic charcoal. Holocene 2000, 10, 519–525. [Google Scholar] [CrossRef]
- Tinner, W.; Hofstetter, S.; Zeugin, F.; Conedera, M.; Wohlgemuth, T.; Zimmermann, L.; Zweifel, R. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps-implications for fire history reconstruction. Holocene 2006, 16, 287–292. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Daniau, A.L.; Harrison, S.P.; Maezumi, S.Y.; Power, M.J.; Tinner, W.; Vanniére, B. Global biomass burning: A synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 2013, 65, 5–25. [Google Scholar] [CrossRef]
- Marlon, J.R.; Kelly, R.; Daniau, A.L.; Vannière, B.; Power, M.J.; Bartlein, P.; Higuera, P.; Blarquez, O.; Brewer, S.; Brücher, T.; et al. Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons. Biogeosciences 2016, 13, 3225–3244. [Google Scholar] [CrossRef] [Green Version]
- Novenko, E.Y.; Tsyganov, A.N.; Volkova, E.M.; Kupriyanov, D.A.; Mironenko, I.V.; Babeshko, K.V.; Utkina, A.S.; Popov, V.; Mazei, Y.A. Mid-and Late Holocene vegetation dynamics and fire history in the boreal forest of European Russia: A case study from Meshchera Lowlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 459, 570–584. [Google Scholar] [CrossRef]
- Novenko, E.Y.; Tsyganov, A.N.; Mazei, N.G.; Kupriyanov, D.A.; Rudenko, O.V.; Bobrovsky, M.V.; Erman, N.M.; Nizovtsev, V.A. Palaeoecological evidence for climatic and human impacts on vegetation in the temperate deciduous forest zone of European Russia during the last 4200 years: A case study from the Kaluzhskiye Zaseki Nature Reserve. Quat. Int. 2019, 516, 58–69. [Google Scholar] [CrossRef]
- Feurdean, A.; Florescu, G.; Tanţău, I.; Vannière, B.; Diaconu, A.C.; Pfeiffer, M.; Warren, D.; Hutchinson, S.M.; Gorina, N.; Gałka, M.; et al. Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia. Quat. Sci. Rev. 2020, 244, 106495. [Google Scholar] [CrossRef]
- Cabadas-Báez, H.; Solleiro-Rebolledo, E.; Sedov, S.; Pi-Puig, T.; Gama-Castro, J. Pedosediments of karstic sinkholes in the eolianites of NE Yucatán: A record of Late Quaternary soil development, geomorphic processes and landscape stability. Geomorphology 2010, 122, 323–337. [Google Scholar] [CrossRef]
- Meyer-Heintze, S.; Sprafke, T.; Krech, M.; Beigel, R.; Nadler, M.; Kriens, B.; Wagner, F.; Solleiro-Rebolledo, E.; Damm, B.; Falkenstein, F.; et al. Pedosedimentary and geoarcheological archives from clay-dominated sinkhole infillings in Middle Franconia, Germany. Catena 2020, 195, 104893. [Google Scholar] [CrossRef]
- Popov, S.Y.; Puchnina, L.V. Disturbance map of Pinega State Reserve vegetation cover in XVIII-XXI cent. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2017, 14, 147–156. (In Russian) [Google Scholar] [CrossRef]
- Goryachkin, S.V.; Pfeiffer, E.-M. (Eds.) Soils and perennial underground ice of glaciated and karst landscapes in northern European Russia. In Guidebook for the Field Session of the IV International Conference on Cryopedology; Institute of Geography RAS: Moscow, Russia, 2005. [Google Scholar]
- Shavrina, E.V.; Malkov, V.N.; Gurkalo, E.I. Karst development and distribution in the Arkhangelsk Region. Geomorfologiya 2007, 2, 90–101. (In Russian) [Google Scholar] [CrossRef]
- Demidov, I.N.; Houmark-Nielsen, M.; Kjaer, K.H.; Larsen, E. The last Scandinavian Ice Sheet in northwestern Russia: Ice flow patterns and decay dynamics. Boreas-Int. J. Quat. Res. 2006, 35, 425–443. [Google Scholar] [CrossRef]
- Yelovicheva, Y.K. Conditions of Holocene carbonates deposition in Arkhangelsk region. In Lake Carbonates of Non-Chernosemic Zone of USSR; PPI: Perm, Russia, 1985; pp. 69–78. (In Russian) [Google Scholar]
- Zubovich, S.F.; Kokarovtsev, V.K.; Uspenskaya, O.N. Holocene climate of north of Non-chernosemic zone of European part of USSR (on example of Arkhangelsk region). In Paleoclimates of Holocene on European Part of USSR; Nauka: Moscow, USSR, 1988. (In Russian) [Google Scholar]
- Popov, S.Y. Structure and features of spatial distribution of pine forests in the Pinega State Nature Reserve. Nat. Conserv. Res. 2017, 2, 40–56. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Makarov, N.A. Colonization of the Northern Periphery of Ancient Russia, 1000–1300 A.D; Scriptorium: Moscow, Russia, 1997; 386p, (In Russian with extended summary in English). [Google Scholar]
- Tallavaara, M.; Pesonen, P.; Oinonen, M. Prehistoric population history in eastern Fennoscandia. J. Archaeol. Sci. 2010, 37, 251–260. [Google Scholar] [CrossRef]
- Tallgren, A.M. Die russischen und asiatischen archäologischen. Sammlungen im Nationalmuseum Finnlands. Eurasia Septentr. Antiq. 1928, 3, 141–164. [Google Scholar]
- Tallgren, A.M. Biarmia. Eurasia Septentr. Antiq. 1931, 6, 100–120. [Google Scholar]
- Burlakov, P.S.; Khmara, K.A. Lightning ignited forest fires as a geoecological factor influencing the stability of light coniferous forests of the Soyana river basin on Belomorsko-Kuloyskoe plateau. Tr. Karel. Nauchnogo Cent. Ras. 2011, 1, 48–53. (In Russian) [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1968. [Google Scholar]
- Barefoot, A.C.; Hankins, F.W. Identification of Modern and Tertiary Woods; Oxford University Press: New York, NY, USA, 1982; 189p. [Google Scholar]
- Vikhrov, B.E. Diagnostic Signs of Wood of the Main Forestry and Timber Industry Species of the USSR; Academy of Sciences Publishing House: Moscow, USSR, 1959; 131p. (In Russian) [Google Scholar]
- Ramsey, C.B. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Paula, J.R.; Edouard, B.A.; Bayliss, J.; Warren, B.; Paul, G. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Hua, Q.; Barbetti, M.; Rakowski, A. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 2013, 55, 2059–2072. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i3794en.pdf (accessed on 27 November 2020).
- Turekian, V.C.; Macko, S.; Ballentine, D.; Swap, R.J.; Garstang, M. Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: Laboratory studies. Chem. Geol. 1998, 152, 181–192. [Google Scholar] [CrossRef]
- Hyodo, F.; Kusaka, S.; Wardle, D.A.; Nilsson, M.C. Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant Soil 2013, 364, 315–323. [Google Scholar] [CrossRef]
- Hoffman, K.M.; Gavin, D.G.; Lertzman, K.P.; Smith, D.J.; Starzomski, B.M. 13,000 years of fire history derived from soil charcoal in a British Columbia coastal temperate rain forest. Ecosphere 2016, 7, e01415. [Google Scholar] [CrossRef] [Green Version]
- Carcaillet, C.; Bergman, I.; Delorme, S.; Hornberg, G.; Zackrisson, O. Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest. Ecology 2007, 88, 465–477. [Google Scholar] [CrossRef]
- Drobyshev, I.; Bergeron, Y.; De Vernal, A.; Moberg, A.; Ali, A.A.; Niklasson, M. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia. Sci. Rep. 2016, 6, 22532. [Google Scholar] [CrossRef] [Green Version]
- Binney, H.A.; Willis, K.J.; Edwards, M.E.; Bhagwat, S.A.; Anderson, P.M.; Andreev, A.A.; Blaauw, M.; Damblon, F.; Haesaerts, P.; Kienast, F.; et al. The distribution of late-Quaternary woody taxa in northern Eurasia: Evidence from a new macrofossil database. Quat. Sci. Rev. 2009, 28, 2445–2464. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, G.M.; Velichko, A.A.; Kremenetski, C.V.; Andreev, A. Holocene treeline history and climate change across northern Eurasia. Quat. Res. 2000, 53, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Salonen, J.S.; Seppä, H.; Väliranta, M.; Jones, V.J.; Self, A.; Heikkilä, M.; Kultti, S.; Yang, H. The Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia. Quat. Res. 2011, 75, 501–511. [Google Scholar] [CrossRef]
- Stivrins, N.; Aakala, T.; Ilvonen, L.; Pasanen, L.; Kuuluvainen, T.; Vasander, H.; Gałka, M.; Disbrey, H.R.; Liepins, J.; Holmström, L.; et al. Integrating fire-scar, charcoal and fungal spore data to study fire events in the boreal forest of northern Europe. Holocene 2019, 29, 1480–1490. [Google Scholar] [CrossRef]
- Kuosmanen, N.; Marquer, L.; Tallavaara, M.; Molinari, C.; Zhang, Y.; Alenius, T.; Edinborough, K.; Pesonen, P.; Reitalu, T.; Renssen, H.; et al. The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fennoscandia. J. Veg. Sci. 2018, 29, 382–392. [Google Scholar] [CrossRef]
- Pitkänen, A.; Huttunen, P.; Jungner, H.; Tolonen, K. A 10,000 year local forest fire history in a dry heath forest site in eastern Finland, reconstructed from charcoal layer records of a small mire. Can. J. For. Res. 2002, 32, 1875–1880. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mergelov, N.; Petrov, D.; Zazovskaya, E.; Dolgikh, A.; Golyeva, A.; Matskovsky, V.; Bichurin, R.; Turchinskaya, S.; Belyaev, V.; Goryachkin, S. Soils in Karst Sinkholes Record the Holocene History of Local Forest Fires at the North of European Russia. Forests 2020, 11, 1268. https://doi.org/10.3390/f11121268
Mergelov N, Petrov D, Zazovskaya E, Dolgikh A, Golyeva A, Matskovsky V, Bichurin R, Turchinskaya S, Belyaev V, Goryachkin S. Soils in Karst Sinkholes Record the Holocene History of Local Forest Fires at the North of European Russia. Forests. 2020; 11(12):1268. https://doi.org/10.3390/f11121268
Chicago/Turabian StyleMergelov, Nikita, Dmitry Petrov, Elya Zazovskaya, Andrey Dolgikh, Alexandra Golyeva, Vladimir Matskovsky, Renat Bichurin, Sofia Turchinskaya, Vladimir Belyaev, and Sergey Goryachkin. 2020. "Soils in Karst Sinkholes Record the Holocene History of Local Forest Fires at the North of European Russia" Forests 11, no. 12: 1268. https://doi.org/10.3390/f11121268
APA StyleMergelov, N., Petrov, D., Zazovskaya, E., Dolgikh, A., Golyeva, A., Matskovsky, V., Bichurin, R., Turchinskaya, S., Belyaev, V., & Goryachkin, S. (2020). Soils in Karst Sinkholes Record the Holocene History of Local Forest Fires at the North of European Russia. Forests, 11(12), 1268. https://doi.org/10.3390/f11121268