Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia
Abstract
:1. Introduction
2. Material and Methods
2.1. Assessment of Stand Damage
2.2. Assessment of Soil Damage
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Picchio, R.; Venanzi, R.; Latterini, F.; Marchi, E.; Laschi, A.; Lo Monaco, A. Corsican pine (Pinus laricio Poiret) stand management: Medium and long lasting effects of thinning on biomass growth. Forests 2018, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- Naghdi, R.; Lotfalian, M.; Bagheri, I.; Jalali, A.M. Damages of skidder and animal logging to forest soils and natural regeneration. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2009, 30, 141–149. [Google Scholar]
- Bustos, O.; Egan, A.; Hedstorm, W. A comparison of residual stand damage along yarding trails in a group selection harvest using four different yarding methods. North. J. Appl. 2010, 27, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Han, S.K.; Cho, M.J.; Baek, S.A.; Yun, J.U.; Cha, D.S. The Characteristics of Residual Stand Damages Caused by Skyline Thinning Operations in Mixed Conifer Stands in South Korea. J. For. Environ. Sci. 2019, 35, 197–204. [Google Scholar]
- Shigo, A.L. Tree Decay: An Expanded Concept USDA Department of Agriculture; U.S. Government Printing Office: Washington, DC, USA, 1979; No. 419. [Google Scholar]
- Vasiliauskas, R. Damage to Trees due to Forestry Operations and its Pathological Significance in Temperate Forests: A Literature Review. J. For. 2001, 74, 319–336. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Tavankar, F.; Bonyad, A.; Mederski, P.S.; Venanzi, R.; Nikooy, M. Detailed analysis of residual stand damage due to winching on steep terrains. Small-Scale For. 2019, 18, 255–277. [Google Scholar] [CrossRef] [Green Version]
- Nichols, M.T.; Lemin, R.C., Jr.; Ostrofsky, W.D. The impact of two harvesting systems on residual stems in a partially cut stand of northern hardwoods. Can. J. For. Res. 1994, 24, 350–357. [Google Scholar] [CrossRef]
- Becker, P.; Jensen, J.; Meinert, D. Conventional and mechanized logging compared for Ozark hardwood forest thinning: Productivity, economics, and environmental impact. North. J. Appl. For. 2006, 23, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Solgi, A.; Najafi, A. The impacts of ground-based logging equipment on forest soil. J. For. Sci. 2014, 60, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Bonyad, A.E.; Nikooy, M.; Picchio, R.; Venanzi, R.; Calienno, L. Damages to soil and tree species by cable-skidding in Caspian forests of Iran. For. Syst. 2017, 26, 11. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, T.T. Soil compaction and growth of woody plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Ferenčík, M.; Slugeň, J. Evaluation of damages caused by the cut-to-length technology on beech stand after salvage felling. Acta Fac. For. Zvolen 2012, 54, 29–41, ISSN 0231-5785. [Google Scholar]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Solgi, A.; Naghdi, R.; Marchi, E.; Laschi, A.; Keivan Behjou, F.; Hemmati, V.; Masumian, A. Impact Assessment of Skidding Extraction: Effects on Physical and Chemical Properties of Forest Soils and on Maple Seedling Growing along the Skid Trail. Forests 2019, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Gebauer, R.; Neruda, J.; Ulrich, R.; Martinková, M. Soil Compaction—Impact of Harvesters’ and Forwarders’ Passages on Plant Growth, Sustainable Forest Management—Current Research. Available online: https://www.intechopen.com/books/sustainable-forest-management-current-research (accessed on 15 October 2020).
- Poršinsky, T.; Sraka, M.; Stankić, I. Comparison of two approaches to soil strength classifications. J. Theory Appl. For. Eng. 2006, 27, 17–26. [Google Scholar]
- Arvidsson, J. Subsoil compaction caused by heavy sugarbeet harvesters in southern Sweden: I. Soil physical properties and crop yield in six field experiments. Soil Tillage Res. 2001, 60, 67–78. [Google Scholar] [CrossRef]
- Lukáč, T. Viacoperačné Stroje v Lesnom Hospodárstve (Multioperational Machines in Forestry); Vydavateľstvo Technickej Univerzity vo Zvolene: Zvolen, Slovakia, 2005; pp. 112–113. ISBN 80-228-1348-6. [Google Scholar]
- Ulrich, R.; Schlaghamerský, A.; Štorek, V. Harvester Technics Using in Thinning; MZLU v Brně: Brno, Czech Republic, 2002; p. 85. [Google Scholar]
- Slamka, M.; Radocha, M. Results of harvesters and forwarders operations in Slovakian forests. Cent. Eur. For. J. 2010, 56, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Schürger, J. Evaluation of the Negative Impact of Skidders in Cableway Terrains. Ph.D. Thesis, Technical university in Zvolen, Zvolen, Slovakia, 2012; pp. 1–198. [Google Scholar]
- Allman, M.; Jankovský, M.; Messingerová, V.; Allmanová, Z.; Ferenčík, M. Soil compaction of various Central European forest soils caused by traffic of forestry machines with various chassis. For. Syst. 2015, 24, 6. [Google Scholar] [CrossRef] [Green Version]
- Fjeld, D.; Granhus, A. Injuries after selection harvesting in multi-stored spruce stands–the influence of operating systems and harvest intensity. J. For. Eng. 1998, 9, 33–40. [Google Scholar]
- Sist, P.; Nolan, T.; Bertault, J.G.; Dykstra, D. Harvesting intensity versus sustainability in Indonesia. For. Ecol. Manag. 1998, 108, 251–260. [Google Scholar] [CrossRef]
- Nakou, A.; Sauter, U.H.; Kohnle, U. Improved models of harvest-induced bark damage. Ann. For. Sci. 2016, 73, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar]
- Meng, W. Baumverletzungen durch Transportvorgänge bei der Holzernte: Ausmass und Verteilung; Folgeschäden am Holz und Versuch ihrer Bewertung. Ph.D. Thesis, Baden-Württemberg Ministerium für Ernährung, Landwirtschaft und Umwelt, Selbstverlag der Landesforstverwaltung Freiburg, Baden-Württemberg, Germany, 1978; p. 159. [Google Scholar]
- Buttora, A.; Schager, G. Holzernteschäden in Durchforstungsbeständen, Nr. 288; Eidgenössische Anstalt für das forstliche Versuchswesen: Birmensdorf, Switzerland, 1986; pp. 1–47. [Google Scholar]
- Maličký, M. Damage of the Remaining Stand and Soils after Skidding by Different Technologies in the Area of Forest District Slovenská Ľupča. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2016; p. 72. [Google Scholar]
- Máliš, P. Demage of the remaining stand by forestry machines on University Forest Entreprise in Zvolen. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2017; p. 57. [Google Scholar]
- Allman, M.; Jankovský, M.; Allmanová, Z.; Ferenčík, M.; Messingerová, V. Negatívne Dopady Ťažbovo-Dopravných Technológií Na Lesnú Pôdu a Možnosti Prevencie v Lesoch Slovenska; Technical University in Zvolen: Zvolen, Slovakia, 2017; p. 132. ISBN 978-80-228-2925-0. [Google Scholar]
- Eštok, T. Evaluation of the Timber Skidding by Tractor HSM 805 HD on the Area of the University Forest Enterprise. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2017; p. 70. [Google Scholar]
- Tsioras, P.; Liamas, D. Hauling damages in a mixed beech-oak stands. In Proceedings of the Formec 2010 “Forest Engineering: Meeting the Needs of the Socienty and the Enviroment”, Padova, Italy, 11–14 July 2010. [Google Scholar]
- Slugeň, J. Environmental aspects of the work of the harvester Timberjack 1270 D and the Forwarder Timberjack 1110 D under the conditions of the forest enterprise Slovenská Ľupča. Acta Fac. For. Zvolen 2009, 51, 97–108, ISSN 0231-5785. [Google Scholar]
- Kučera, M. Damage of the Remaining Stand by Harvester Technologies. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2015; p. 56. [Google Scholar]
- Korten, S. Ökosystem management I; Technische Universität Munchen: München, Germany, 2004. [Google Scholar]
- Allman, M.; Allmanová, Z.; Jankovský, M.; Ferenčík, M.; Messingerová, V. Damage of the remaining stands caused by various types of logging technology. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Wiedenbeck, J.; Smith, T.K. Hardwood management, tree wound response, and wood product value. For. Chron. 2019, 94, 292–306. [Google Scholar]
- Kohnle, U.; Kändler, G. Is Silver fir (Abies alba) less vulnerable to extraction damage than Norway spruce (Picea abies)? Eur. J. For. Res. 2007, 126, 121–129. [Google Scholar] [CrossRef]
- Metzler, B.; Hecht, U.; Nill, M.; Brüchert, F.; Fink, S.; Kohnle, U. Comparing Norway spruce and silver fir regarding impact of bark wounds. For. Ecol. Manag. 2012, 274, 99–107. [Google Scholar] [CrossRef]
- Mederski, P.S.; Bembenek, M.; Karaszewski, Z.; Pilarek, Z.; Łacka, A. Investigation of log length accuracy and harvester efficiency in processing of oak trees. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2018, 39, 173–181. [Google Scholar]
- Slugeň, J.; Peniaško, P.; Messingerová, V.; Jankovský, M. Productivity of a John Deere harvester unit in deciduous stands. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Stampfer, K.; Limbeck-Lilienau, B.; Steinmüller, T. Bestandesschäden bei der mechanisierten Holzernte am Steilhang. Bündner Wald 2002, 55, 37–42. [Google Scholar]
- Schoettle, R.; Pfeil, C.; Boes, T.; Ilg, H.D. Vorkonzentrierung durch Raupenharvester steigert Rückeleistung mit Seilschlepper. AFZ/Der Wald 1999, 18, 32–934. [Google Scholar]
- Kelley, R.S. Stand damage from whole-tree harvesting in Vermont hardwoods. J. For. 1983, 81, 95–96. [Google Scholar]
- Sirén, M. Tree damage in single-grip harvester thinning operations. J. For. Eng. 2001, 12, 29–38. [Google Scholar]
- Nill, M. Rindenschäden durch Holzernte in Baden-Württemberg-Ursachen und Prognose; Freiburg Forstl: Freiburg, Germany, 2011; Volume 50, p. 161. [Google Scholar]
- Einspahr, D.W.; Van Eperen, R.H.; Fiscus, M.H. Morphological and bark strength characteristics important to wood/bark adhesion in hardwoods. Wood Fiber Sci. 2007, 16, 339–348. [Google Scholar]
- Allmanová, Z. Soil Compaction and Changes of Carbon Dioxide Concentration in Soils Caused by Forestry Machine Traffic. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2013; p. 124. [Google Scholar]
- Lhotský, J. Zhutňovaní Půd a Opatření Proti Němu; Ústav zemnědelských a potravinářských informací: Praha, Czech Republic, 2000; pp. 1–62. [Google Scholar]
- Gerasimov, Y.; Katarov, V. Effect of bogie track and slash reinforcement on sinkage and soil compaction in soft terrains. J. Theory Appl. For. Eng. 2010, 31, 35–45. [Google Scholar]
Forest Stand | 366a | 366c | 507 | 537 | 566 |
---|---|---|---|---|---|
Technology | John Deere 1270D CTL tech. | John Deere 1270D CTL tech. | HSM805HD skidder | Horse + Zetor 7245 Animal tech. | Horse + Zetor 7245 Animal tech. |
Age (years) | 100 | 100 | 115 | 70 | 65 |
Area (ha) | 4.36 | 4.51 | 7.53 | 4.45 | 5.52 |
Slope (%) | 15 | 15 | 10 | 40 | 70 |
Aspect | NE | E | SE | SE | SE |
Stocking | 0.84 | 0.99 | 0.73 | 0.80 | 0.80 |
Tree species (%) | Sessile oak 92; Pine 6; Hornbeam 2 | Sessile oak 98; Beech 1; Hornbeam 1 | Sessile oak 67; Pine 22; Beech 11 | Beech 70; Fir 20; Spruce 10 | Beech 50; Sessile oak 25; Hornbeam 25 |
Mean stem volume (m3) | Sessile oak 0.84; Pine 1.63; Hornbeam 0.48 | Sessile oak 0.87; Beech 0.64; Hornbeam 0.17 | Sessile oak 1.33; Pine 1.29; Beech 1.81 | Beech 0.86; Fir 1.78; Spruce 1.50 | Beech 0.51; Sessile oak 0.37; Hornbeam 0.26 |
Soil type | Ilimerised soil | Ilimerised soil | Ilimerised soil | Brown forest soil | Brown forest soil |
Number of sample plots | 6 | 6 | 8 | 6 | 7 |
Felled volume (m3) | 238 | 174 | 382 | 164 | 123 |
Machine Type | John Deere 1270D | John Deere 1110 E | HSM 805 HD | Zetor 7245 |
---|---|---|---|---|
Dimensions width/length/height (mm) | 2766/11600/ 3850 | 2700/9820/ 3870 | 2400/5800/ 3200 | 2260/4530/ 2780 |
Weight (kg) | 17,499 | 17,300 | 9800 | 4100 |
Engine | John Deere 6090HTJ | John Deere 6068HTJ | Volvo Penta, four-cylinder | Z 7201 |
Power (kW) | 160 | 136 | 129 | 46 |
Maximum speed (km/hour) | 25 | - | - | 25 |
Winch | - | - | Double drum ADLER HY 20SG | Single drum |
Pulling force (kN) | - | - | 2 × 100 kN | 30.49 kN |
Front tyres | 600 × 26.5, 20 PR Forest King F NK | 710 × 26.5−20 | Nokian Forest King TRS LS-2 23.1–26 | 9.5–24 |
Back tyres | 600 × 34, 14 PR Forest King F NK | 710 × 26.5−20 | Nokian Forest King TRS LS-2 23.1–26 | 18.4–26 |
Damage Location | Characteristics |
---|---|
Root | Root damage (aboveground) at a distance of 0.21 to 1.0 m from the stem |
Buttress root | Damage of the butt part of a stem at a distance of maximum 0.2 m from the stem and to the height of 0.3 m on stem |
Stem | Stem damage at a height between 0.3–1.0 m |
Stem | Stem damage at a height above 1 m |
Wound Category | Damage Size (cm2) | Characteristic |
---|---|---|
0 | <10 | meaningless |
1 | 11–50 | very small |
2 | 51–100 | little |
3 | 101–200 | medium size |
4 | 201–300 | large |
5 | >300 | very large |
6 | Root rupture–breakage | destructive |
Damage Intensity Class | Damage Characteristics |
---|---|
1. The top layer of bark is damaged | The outer bark is damaged, cambium is undamaged, the tree reacts with low resin outflow, low risk of fungal infection |
2. Bark crushed (wrinkled) | Bark is wrinkled, but holds on a stem, fungal infection risk is low |
3. Wood exposed but undamaged | Bark is peeled off, wood is exposed but undamaged, fungal infection risk is moderate |
4. Wood exposed and slightly damaged | Bark is peeled off, wood is exposed and slightly damaged, high risk of fungal infection |
5. Wood exposed, and heavily damaged | Bark is peeled off, wood is exposed and heavily damaged, risk of fungal infection is very high |
Stand ID | 366a | 366c | 507 | 537 | 566 |
---|---|---|---|---|---|
Number of assessed trees at sample plots | 127 | 137 | 144 | 141 | 159 |
Number of damaged trees at sample plots | 26 | 32 | 28 | 28 | 23 |
Damage intensity (%) | 20.47 | 23.36 | 19.44 | 19.86 | 14.47 |
Felling intensity (%) | 18.59 | 16.96 | 18.18 | 18.02 | 16.32 |
Sum of wound areas (cm2) | 7335 | 8630 | 6830 | 7190 | 4790 |
Mean wound area/classification according to MENG | 222.27 large | 200.69 medium size | 145.32 medium size | 194.32 medium size | 171 medium size |
Stand | 366a | 366c | 507 | 537 | 566 |
---|---|---|---|---|---|
Bulk density stand (g·cm−3) | 1.15 | 1.10 | 0.95 | 0.89 | 0.91 |
Bulk density rut (g·cm−3) | 1.17 | 1.12 | 1.06 | 1.03 | 1.01 |
Bulk density centre (g·cm−3) | 1.20 | 1.08 | 1.03 | 0.96 | 0.95 |
Moisture stand (%) | 10.47 | 11.62 | 20.14 | 23.59 | 19.51 |
Moisture rut (%) | 15.29 | 17.60 | 28.40 | 25.71 | 21.38 |
Moisture centre (%) | 11.69 | 13.19 | 21.70 | 25.82 | 22.19 |
Duncan’s Test, Average Dry Bulk Density (g·cm−3) Approximate Likelihood of Post Hoc Tests Error: Between Groups = 0.01783, Degrees of Freedom = 193.00 | |||||
---|---|---|---|---|---|
Stand | 366a 1.1331 | 366c 1.0998 | 507 1.0143 | 537 0.95824 | 566 0.95525 |
366A | 2.70 × 10−1 | 1.33 × 10−4 * | 3.00 × 10−6 * | 4.00 × 10−6 * | |
366C | 2.70 × 10−1 | 4.72 × 10−3 | 1.50 × 10−5 * | 6.00 × 10−6 * | |
507 | 1.33 × 10−4 * | 4.72 × 10−3 * | 6.33 × 10−2 | 6.37 × 10−2 | |
537 | 3.00 × 10−6 * | 1.50 × 10−5 * | 6.33 × 10−2 | 9.21 × 10−1 | |
566 | 4.00 × 10−6 * | 6.00 × 10−6 * | 3.37 × 10−2 | 9.21 × 10−1 |
Duncan’s Test, Soil Moisture Content (%) Approximate Likelihood of Post Hoc Tests Error: Between Groups = 36.525, Degrees of Freedom = 193.00 | |||||
---|---|---|---|---|---|
Stand | 366a 12.484 | 366c 14.135 | 507 23.413 | 537 25.043 | 566 21.028 |
366A | 2.27 × 10−1 | 3.00 × 10−6 * | 4.00 × 10−6 * | 1.10 × 10−5 * | |
366C | 2.27 × 10−1 | 1.10 × 10−5 * | 3.00 × 10−6 * | 9.00 × 10−6 * | |
507 | 3.00 × 10−6 * | 1.10 × 10−5 * | 2.33 × 10−1 | 8.12 × 10−2 | |
537 | 4.00 × 10−6 * | 3.00 × 10−6 * | 2.33 × 10−1 | 4.68 × 10−3 * | |
566 | 1.10 × 10−5 * | 9.00 × 10−6 * | 8.12 × 10−2 | 4.68 × 10−3 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudáková, Z.; Allman, M.; Merganič, J.; Merganičová, K. Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia. Forests 2020, 11, 1289. https://doi.org/10.3390/f11121289
Dudáková Z, Allman M, Merganič J, Merganičová K. Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia. Forests. 2020; 11(12):1289. https://doi.org/10.3390/f11121289
Chicago/Turabian StyleDudáková (Allmanová), Zuzana, Michal Allman, Ján Merganič, and Katarína Merganičová. 2020. "Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia" Forests 11, no. 12: 1289. https://doi.org/10.3390/f11121289
APA StyleDudáková, Z., Allman, M., Merganič, J., & Merganičová, K. (2020). Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia. Forests, 11(12), 1289. https://doi.org/10.3390/f11121289