Uranium Vertical and Lateral Distribution in a German Forested Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Data Analysis
3. Results
3.1. Uranium Concentration and Spatial Patterns on the Catchment Scale
3.2. Correlations between U and Other Elements
4. Discussion
4.1. Uranium Concentration on the Catchment Scale
4.2. Correlations between U and Other Elements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nanos, N.; Martín, J.A.R. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma 2012, 189, 554–562. [Google Scholar] [CrossRef]
- Reimann, C.; Fabian, K.; Birke, M.; Filzmoser, P.; Demetriades, A.; Négrel, P.; Oorts, K.; Matschullat, J.; De Caritat, P.; Albanese, S.; et al. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem. 2018, 88, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Brugge, D.; De Lemos, J.L.; Oldmixon, B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review. Rev. Environ. Health 2005, 20, 177–194. [Google Scholar] [CrossRef]
- Taylor, D.M.; Taylor, S.K. Environmental uranium and human health. Rev. Environ. Health 1997, 12, 147–158. [Google Scholar] [CrossRef]
- Kebata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Utermann, J.; Fuchs, M. Uranium in German soils. In Loads and Fate of Fertilizer-Derived Uranium; Backhuys Publishers: Leiden, The Netherlands, 2008; ISBN/EAN: 978-90-5782-193-6. [Google Scholar]
- Environment Canada. Uranium. In Guidelines for Surface Water Quality: Inorganic Chemical Substances; Water Quality Branch, Inland Waters Directorate: Ottawa, ON, Canada, 1983. [Google Scholar]
- Baeza, A.; Del Rio, M.; Jimenez, A.; Miro, C.; Paniagua, J. Influence of geology and soil particle size on the surface-area/volume activity ratio for natural radionuclides. J. Radioanal. Nucl. Chem. 1995, 189, 289–299. [Google Scholar] [CrossRef]
- Adams, J.A.; Osmond, J.K.; Rogers, J.J. The geochemistry of thorium and uranium. Phys. Chem. Earth 1959, 3, 298–348. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Uranium; U.S. Department of Health and Human Services: Atlanta, GA, USA, 1999.
- Sun, Y.; Maekawa, M.; Wu, B.; Amelung, W.; Christensen, B.T.; Pätzold, S.; Bauke, S.L.; Schweitzer, K.; Baumecker, M.; Bol, R. Non-critical uranium accumulation in soils of German and Danish long-term fertilizer experiments. Geoderma 2020, 370, 114336. [Google Scholar] [CrossRef]
- Bigalke, M.; Ulrich, A.; Rehmus, A.; Keller, A. Accumulation of cadmium and uranium in arable soils in Switzerland. Environ. Pollut. 2017, 221, 85–93. [Google Scholar] [CrossRef]
- Cumberland, S.A.; Douglas, G.; Grice, K.; Moreau, J.W. Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth Sci. Rev. 2016, 159, 160–185. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978, 42, 547–569. [Google Scholar] [CrossRef]
- Fayek, M.; Horita, J.; Ripley, E.M. The oxygen isotopic composition of uranium minerals: A review. Ore Geol. Rev. 2011, 41, 1–21. [Google Scholar] [CrossRef]
- Romberger, S.B. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300 °C: Geological implications. In Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources; Springer: Dordrecht, The Netherlands, 1984; pp. 12–17. [Google Scholar]
- Babula, P.; Adam, V.; Opatrilova, R.; Zehnalek, J.; Havel, L.; Kizek, R. Uncommon heavy metals, metalloids and their plant toxicity: A review. Environ. Chem. Lett. 2008, 6, 189–213. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment (CCME). Canadian Soil Quality Guidelines for Uranium: Environmental and Human Health; Canadian Council of Ministers of the Environment: Hull, QC, Canada, 2007.
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005; 526p, ISBN1 951-690-921-3. ISBN2 951-690-960-4. [Google Scholar]
- Peukert, S.; Bol, R.; Roberts, W.; MacLeod, C.J.; Murray, P.J.; Dixon, E.R.; Brazier, R.E. Understanding spatial variability of soil properties: A key step in establishing field- to farm-scale agro-ecosystem experiments. Rapid Commun. Mass Spectrom. 2012, 26, 2413–2421. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.A.; Nanos, N.; Grau, J.M.; Sanchez, L.G.; López-Arias, M. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 2008, 70, 1085–1096. [Google Scholar] [CrossRef] [Green Version]
- Taboada, T.; Cortizas, A.M.; García, C.; Garcia-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 2006, 356, 192–206. [Google Scholar] [CrossRef]
- Yoshida, S.; Muramatsu, Y.; Tagami, K.; Uchida, S. Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environ. Int. 1998, 24, 275–286. [Google Scholar] [CrossRef]
- Bogena, H.R.; Herbst, M.; Huisman, J.A.; Rosenbaum, U.; Weuthen, A.; Vereecken, H. Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J. 2010, 9, 1002–1013. [Google Scholar] [CrossRef] [Green Version]
- Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach-Bahl, K.; et al. A network of terrestrial environmental observatories in Germany. Vadose Zone J. 2011, 10, 955–973. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group. World Reference Base for Soil Resources; World Soil Resources Report 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48, 10. [Google Scholar] [CrossRef] [Green Version]
- Gottselig, N.; Wiekenkamp, I.; Weihermüller, L.; Brüggemann, N.; Berns, A.E.; Bogena, H.R.; Borchard, N.; Klumpp, E.; Lücke, A.; Missong, A.; et al. A three-dimensional view on soil biogeochemistry: A dataset for a forested headwater catchment. J. Environ. Qual. 2017, 46, 210–218. [Google Scholar] [CrossRef]
- Wu, B.; Wiekenkamp, I.; Sun, Y.; Fisher, A.; Clough, R.; Gottselig, N.; Bogena, H.; Pütz, T.; Brüggemann, N.; Vereecken, H.; et al. A dataset for three-dimensional distribution of 39 elements including plant nutrients and other metals and metalloids in the soils of a forested headwater catchment. J. Environ. Qual. 2017, 46, 1510–1518. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils 1998, 27, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, P.H.; Pebesma, E.J.; Twenhöfel, C.J.W.; Heuvelink, G.B.M. Real-time automatic interpolation of ambient gamma dose rates from the Dutch Radioactivity Monitoring Network. Comput. Geosci. 2009, 35, 1711–1721. [Google Scholar] [CrossRef]
- Aubert, D.; Probst, A.; Stille, P. Distribution and origin of major and trace elements (particularly REE, U and Th) into labile and residual phases in an acid soil profile (Vosges Mountains, France). Appl. Geochem. 2004, 19, 899–916. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Muramatsu, Y. Determination of major and trace elements in mushroom, plant and soil samples collected from Japanese forests. Int. J. Environ. Anal. Chem. 1997, 67, 49–58. [Google Scholar] [CrossRef]
- Ahmed, H.; Young, S.D.; Shaw, G. Factors affecting uranium and thorium fractionation and profile distribution in contrasting arable and woodland soils. J. Geochem. Explor. 2014, 145, 98–105. [Google Scholar] [CrossRef]
- Huhle, B.; Kummer, S.; Merkel, B. Mobility of uranium from phosphate fertilizers in sandy soils. In Loads and Fate of Fertilizer-Derived Uranium; Backhuys Publishers: Leiden, The Netherlands, 2008; pp. 47–57. [Google Scholar]
- Sun, Y.; Amelung, W.; Gudmundsson, T.; Wu, B.; Bol, R. Critical accumulation of fertilizer-derived uranium in Icelandic grassland Andosol. Environ. Sci. Eur. 2020, 32, 1–7. [Google Scholar] [CrossRef]
- Gale, J.F.; Laubach, S.E.; Olson, J.E.; Eichhubl, P.; Fall, A. Natural Fractures in shale: A review and new observations. AAPG Bull. 2014, 98, 2165–2216. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 2001, 53, 51–77. [Google Scholar] [CrossRef]
- Davis, H.T.; Aelion, C.M.; McDermott, S.; Lawson, A.B. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ. Pollut. 2009, 157, 2378–2385. [Google Scholar] [CrossRef] [Green Version]
- Adriano, D. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioaccessibility and the Risk of Metals, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Koljonen, T.; Darnley, A.G. The Geochemical Atlas of Finland—Part 2: Till. Econ. Geol. Bull. Soc. Econ. Geol. 1994, 89, 211. [Google Scholar]
- Mercadier, J.; Cuney, M.; Lach, P.; Boiron, M.-C.; Bonhoure, J.; Richard, A.; Leisen, M.; Kister, P. Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 2011, 23, 264–269. [Google Scholar] [CrossRef]
L/Of | Oh | A | B | |
---|---|---|---|---|
TC | −0.76 ** | −0.34 ** | −0.65 ** | −0.15 |
TN | −0.17 * | −0.28 ** | −0.65 ** | -0.02 |
K | −0.31 ** | −0.37 ** | −0.23 | 0.26 ** |
Ca | −0.32 ** | −0.31 ** | −0.60 ** | 0.35 ** |
S | 0.07 | −0.38 ** | −0.63 ** | −0.18 * |
P | 0.16 * | 0.20 * | −0.07 | 0.40 ** |
Mg | 0.63 ** | 0.12 | 0.15 | −0.32 ** |
Fe | 0.87 ** | 0.51 ** | 0.58 ** | 0.23 ** |
Cu | 0.68 ** | 0.35 ** | 0.09 | 0.59 ** |
Mn | −0.47 | 0.17 * | 0.64 ** | 0.20 * |
Mo | 0.63 ** | 0.10 | −0.13 | 0.42 ** |
Zn | 0.31 ** | 0.10 | 0.39 | 0.07 |
P | 0.16 * | 0.20 * | −0.07 | 0.40 ** |
Mg | 0.63 ** | 0.12 | 0.16 | −0.32 ** |
L/Of | Oh | A | B | |
---|---|---|---|---|
Cr | 0.87 ** | 0.47 ** | 0.55 * | 0.12 |
Co | 0.84 ** | 0.30 ** | 0.55 * | 0.14 |
As | 0.86 ** | 0.47 ** | −0.20 | 0.28 ** |
Pb | 0.74 ** | 0.24 ** | −0.41 | 0.23 ** |
Ni | 0.74 ** | 0.42 ** | 0.23 | −0.03 |
Ga | 0.54 ** | 0.36 ** | 0.036 | −0.11 |
Hg | 0.33 ** | −0.05 | −0.22 | 0.40 ** |
Cd | 0.46 ** | −0.003 | −0.15 | 0.16 |
L/Of | Oh | A | B | |
---|---|---|---|---|
La | 0.93 ** | 0.70 ** | 0.25 ** | 0.35 ** |
Ce | 0.93 ** | 0.74 ** | 0.25 ** | 0.52 ** |
Pr | 0.93 ** | 0.78 ** | 0.19 * | 0.45 ** |
Nd | 0.92 ** | 0.79 ** | 0.32 ** | 0.47 ** |
Sm | 0.93 ** | 0.80 ** | 0.39 ** | 0.54 ** |
Eu | 0.93 ** | 0.77 ** | 0.42 ** | 0.52 ** |
Gd | 0.94 ** | 0.76 ** | 0.30 ** | 0.61 ** |
Tb | 0.93 ** | 0.77 ** | 0.48 ** | 0.74 ** |
Dy | 0.94 ** | 0.77 ** | 0.63 ** | 0.78 ** |
Ho | 0.92 ** | 0.75 ** | 0.67 ** | 0.78 ** |
Er | 0.93 ** | 0.74 ** | 0.57 ** | 0.80 ** |
Tm | 0.93 ** | 0.67 ** | 0.68 ** | 0.82 ** |
Yb | 0.93 ** | 0.73 ** | 0.66 ** | 0.83 ** |
Lu | 0.92 ** | 0.69 ** | 0.69 ** | 0.82 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wu, B.; Wiekenkamp, I.; Kooijman, A.M.; Bol, R. Uranium Vertical and Lateral Distribution in a German Forested Catchment. Forests 2020, 11, 1351. https://doi.org/10.3390/f11121351
Sun Y, Wu B, Wiekenkamp I, Kooijman AM, Bol R. Uranium Vertical and Lateral Distribution in a German Forested Catchment. Forests. 2020; 11(12):1351. https://doi.org/10.3390/f11121351
Chicago/Turabian StyleSun, Yajie, Bei Wu, Inge Wiekenkamp, Annemieke M. Kooijman, and Roland Bol. 2020. "Uranium Vertical and Lateral Distribution in a German Forested Catchment" Forests 11, no. 12: 1351. https://doi.org/10.3390/f11121351
APA StyleSun, Y., Wu, B., Wiekenkamp, I., Kooijman, A. M., & Bol, R. (2020). Uranium Vertical and Lateral Distribution in a German Forested Catchment. Forests, 11(12), 1351. https://doi.org/10.3390/f11121351