Expansion of Eastern Redcedar (Juniperus virginiana L.) into the Deciduous Woodlands within the Forest–Prairie Ecotone of Kansas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Datasets Used
2.2. Assessment of Classification Algorithms
2.2.1. K-Means Clustering Algorithm
2.2.2. ISODATA
2.2.3. Maximum Likelihood Classification (MLC)
2.2.4. Support Vector Machines (SVMs)
2.3. Assessment of Image Preparation Schemes
2.3.1. Multi-Seasonal Layer Stacking with SVMs
2.3.2. Composite/Multi-Temporal Image Analysis with SVMs
2.4. Accuracy Assessment
2.5. Assessing ERC Expansion between 1986 and 2017
Accuracy Assessment and Area Estimation
3. Results and Discussion
3.1. Selecting the Most Effective Classification Scheme
3.2. ERC Dynamics within the Three Study Regions
3.2.1. Tuttle Creek Reservoir—SA1
3.2.2. Perry Reservoir—SA2
3.2.3. Bourbon County North—SA3
3.3. Impact on Deciduous Woodlands
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeSantis, R.D.; Hallgren, S.W.; Stahle, D.W. Drought and fire suppression lead to rapid forest composition change in a forest-prairie ecotone. Forest Ecol. Manag. 2011, 261, 1833–1840. [Google Scholar] [CrossRef]
- Bailey, R.G.; Avers, P.E.; King, T.; McNab, W.H. Ecoregions and Subregions of the United States; 1:7,500,000-Scale Map; USDA Forest Service: Washington, DC, USA, 1994.
- Johnson, P.S.; Shifley, S.R.; Rogers, R. The Ecology and Silviculture of Oak; CABI Publishing: New York, NY, USA, 2009. [Google Scholar]
- Briggs, J.M.; Hoch, G.A.; Johnson, L.C. Assessing the rate, mechanisms, and consequences of the conversion of tallgrass prairie to Juniperus virginiana forest. Ecosystems 2002, 5, 578–586. [Google Scholar] [CrossRef]
- Ratajczak, Z.; Nippert, J.B.; Briggs, J.M.; Blair, J.M. Fire dynamics distinguish grasslands, shrublands and woodlands as alternative attractors in the central great plains of North America. J. Ecol. 2014, 102, 1374–1385. [Google Scholar] [CrossRef] [Green Version]
- Meneguzzo, D.M.; Liknes, G.C. Status and trends of eastern redcedar (Juniperus virginiana) in the central United States: Analyses and observations based on forest inventory and analysis data. J. For. 2015, 113, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Moser, W.K.; Hansen, M.H.; Atchison, R.L.; Butler, B.J.; Crocker, S.J.; Domke, G.; Kurtz, C.M.; Lister, A.; Miles, P.D. Kansas’ forests 2010. In Resource Bulletin; NRS-85; USDA Forest Service, Northern Research Station: Newtown Square, PA, USA, 2013; p. 63. [Google Scholar]
- Galgamuwa, G.A.P.; Barden, C.J.; Hartman, J.; Rhodes, T.; Bloedow, N.; Osõrio, R. Ecological Restoration of an Oak Woodland within the Forest-Prairie Ecotone of Kansas. For. Sci. 2018, 65, 48–58. [Google Scholar] [CrossRef]
- Briggs, J.M.; Knapp, A.K.; Brock, B.L. Expansion of woody plants in tallgrass prairie: A fifteen-year study of fire and fire-grazing interactions. Am. Midl. Nat. 2002, 147, 287–294. [Google Scholar] [CrossRef]
- Ratajczak, Z.; Briggs, J.M.; Goodin, D.G.; Luo, L.; Mohler, R.L.; Nippert, J.B.; Obermeyer, B. Assessing the potential for transitions from tallgrass prairie to woodlands: Are we operating beyond critical fire thresholds? Rangel. Ecol. Manag. 2016, 69, 280–287. [Google Scholar] [CrossRef]
- Leis, S.A.; Blocksome, C.E.; Twidwell, D.; Fuhlendorf, S.D.; Briggs, J.M.; Sanders, L.D. Juniper invasions in grasslands: Research needs and intervention strategies. Rangelands 2017, 39, 64–72. [Google Scholar] [CrossRef]
- Homer, C.G.; Aldridge, C.L.; Meyer, D.K.; Schell, S.J. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring. Int. J. Appl. Earth Observat. Geoinfor. 2012, 14, 233–244. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons: New York, NY, USA, 2015; p. 720. [Google Scholar]
- Sankey, T.T.; Glenn, N.; Ehinger, S.; Boehm, A.; Hardegree, S. Characterizing western Juniper expansion via a fusion of Landsat 5 thematic mapper and LiDAR data. Rangel. Ecol. Manag. 2010, 63, 514–523. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Tolk, B.; Zhu, Z. Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sens. Environ. 2009, 113, 1739–1748. [Google Scholar] [CrossRef]
- Mennis, J.; Guo, D. Spatial data mining and geographic knowledge discovery—An introduction. Comput. Environ. Urban Syst. 2009, 33, 403–408. [Google Scholar] [CrossRef]
- Fayyad, U.M.; Piatetsky-Shapiro, G.; Smyth, P. Knowledge discovery and data mining: Towards a unifying framework. In Proceedings of the Second International Conference on Knowledge Discovery and Data Minining (KDD96); AAAI Press: Portland, OR, USA, 1996; pp. 82–88. [Google Scholar]
- Burchfield, D.R. Mapping Eastern Redcedar (Juniperus virginiana L.) and Quantifying its Biomass in Riley County, Kansas. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2014. [Google Scholar]
- Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Tso, B.; Mather, P. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Canty, M.J. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Rahman, M. Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. ISPRS Int. J. Geo-Infor. 2016, 5, 15. [Google Scholar] [CrossRef]
- Brannstrom, C.; Jepson, W.; Filippi, A.M.; Redo, D.; Xu, Z.; Ganesh, S. Land change in the Brazilian Savanna (Cerrado), 1986–2002: Comparative analysis and implications for land-use policy. Land Use Pol. 2008, 25, 579–595. [Google Scholar] [CrossRef]
- Memarsadeghi, N.; Mount, D.M.; Netanyahu, N.S.; Le Moigne, J. A fast implementation of the ISODATA clustering algorithm. Int. J. Comput. Geom. Appl. 2007, 17, 71–103. [Google Scholar] [CrossRef]
- Thomson, A. Supervised versus unsupervised methods for classification of coasts and river corridors from airborne remote sensing. Int. J. Remote Sens. 1998, 19, 3423–3431. [Google Scholar] [CrossRef]
- Charaniya, A.P.; Manduchi, R.; Lodha, S.K. Supervised parametric classification of aerial lidar data. In Proceedings of the IEEE 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’04), Baltimore, MD, USA, 27 June–2 July 2004; Volune 3, pp. 1–8. [Google Scholar]
- Alqurashi, A.F.; Kumar, L. Land use and land cover change detection in the Saudi Arabian desert cities of Makkah and Al-Taif using satellite data. Adv. Remote Sens. 2014, 3, 106–119. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogr. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Taati, A.; Sarmadian, F.; Mousavi, A.; Pour, C.T.H.; Shahir, A.H.E. Land use classification using support vector machine and maximum likelihood algorithms by Landsat 5 TM images. Walailak J. Sci. Technol. (WJST) 2015, 12, 681–687. [Google Scholar]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Christianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Gavier-Pizarro, G.I.; Kuemmerle, T.; Hoyos, L.E.; Stewart, S.I.; Huebner, C.D.; Keuler, N.S.; Radeloff, V.C. Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM satellite data and support vector machines in Córdoba, Argentina. Remote Sens. Environ. 2012, 122, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Hoch, G.A.; Briggs, J.M. Expansion of eastern red cedar (Juniperus virginiana) in the northern Flint Hills, Kansas. In Proceedings of the 16th North American Prairie Conference; Springer, J.T., Ed.; University of Nebraska: Kearney, Nebraska, USA, 1999; pp. 9–15. [Google Scholar]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images. Remote Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef] [Green Version]
- FAO. Map Accuracy Assessment and Area Estimation: A Practical Guide; National Forest Monitoring Assessment Working Paper No. 46/E; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; Available online: http://www.fao.org/3/a-i5601e.pdf (accessed on 18 October 2017).
- Hoff, D.; Will, R.; Zou, C.; Lillie, N. Encroachment dynamics of Juniperus virginiana L. and mesic hardwood species into cross timbers forests of North-Central Oklahoma, USA. Forests 2018, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Knapp, B.O.; Pallardy, S.G. Forty-Eight Years of Forest Succession: Tree Species Change across Four Forest Types in Mid-Missouri. Forests 2018, 10, 633. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.J.; Hallgren, S.W.; Wilson, G.W.; Palmer, M.W. Juniperus virginiana encroachment into upland oak forests alters arbuscular mycorrhizal abundance and litter chemistry. Appl. Soil Ecol. 2013, 65, 23–30.
- Twidwell, D.; Fuhlendorf, S.D.; Taylor, C.A., Jr.; Rogers, W.E. Refining thresholds in coupled fire–vegetation models to improve management of encroaching woody plants in grasslands. J. Appl. Ecol. 2013, 50, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Armbrust, R.; Carlson, D.; Hartman, J.; McDonnell, T.; Paul, D.; Williams, J.; Yoder, A.; Biles, L. Eastern Redcedar Expansion: Perspective, response, and strategy. Agricultural Experiment Station and Cooperative Extension Service, Kansas State University, Manhattan, KS, USA. 2018. Available online: https://www.kansasforests.org/resources/resources_docs/Eastern-Redcedar.pdf (accessed on 13 September 2019).
- Strine, J.H. Windbreaks for Kansas. Agricultural Experiment Station and Cooperative Extension Service, Kansas State University. MF-2120. 2004. Available online: https://www.bookstore.ksre.ksu.edu/pubs/MF2120.pdf (accessed on 13 September 2019).
- Osorio, R.J.; Barden, C.J.; Ciampitti, I.A. GIS approach to estimate windbreak crop yield effects in Kansas–Nebraska. Agrofor. Syst. 2019, 93, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Paul, D.A.; Whitson, J.W.; Marcotte, A.L.; Liknes, G.C.; Meneguzzo, D.M.; Kellerman, T.A. High-resolution land cover of Kansas (2015); Updated 27 November 2017; Forest Service Research Data Archive: Fort Collins, CO, USA; Available online: https://doi.org/10.2737/RDS-2017-0025 (accessed on 29 October 2019).
- Ansley, R.J.; Wiedemann, H.T. Reversing the woodland steady state: Vegetation responses during restoration of Juniperus-dominated grasslands with chaining and fire. Western North American Juniperus Communities; Springer: New York, NY, USA, 2008; pp. 272–290. [Google Scholar]
- Weir, J.R.; Derek, S.J. Ignition and fire behaviour of Juniperus virginiana in response to live fuel moisture and fire temperature in the southern Great Plains. Int. J. Wildl. Fire 2014, 23, 839–844. [Google Scholar] [CrossRef]
- Galgamuwa, G.A.P. Ecological Restoration of an Oak Woodland in Kansas Informed with Remote Sensing of Vegetation Dynamics. Ph.D. Dissertation, Kansas State University, Manhattan, KS, USA, 2017. [Google Scholar]
- Simões, L.H.P. Effects of Prescribed Burning and Thinning on Oak Regeneration in Northeast Kansas. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2019. [Google Scholar]
- Nowacki, G.J.; Abrams, M.D. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 2008, 58, 123–138. [Google Scholar] [CrossRef]
Season | Landsat Image Scenes | |||
---|---|---|---|---|
Study Area 1 (SA1) Tuttle Creek Reservoir (Path 28/row 33) | Study Area 2 (SA2) Perry Reservoir (Path 27/row 33) | Study Area 3 (SA3) Bourbon County North (Path 27/row 34) | ||
1986–1988 | Dormant season | 21 March 1986 | 14 March 1986 | 09 January 1986 |
Growing season | 13 Sept. 1986 | 26 August 1988 | 07 June 1988 | |
2015–2017 | Dormant season | 21 January 2017 | 03 March 2017 | 03 March 2017 |
Growing season | 09 June 2015 | 06 Sept. 2015 | 22 July 2016 |
Multi-Seasonal SVM (Improved)—1986 | |||||||||
Reference Data | User’s Accuracy | ||||||||
Crop | Grass. | Dec. Woodland | ERC | Water | Wetlands | Total | |||
Classification Data | Crop fields | 75 | 9 | 6 | 0 | 1 | 0 | 91 | 82.4 |
Grassland | 0 | 66 | 0 | 0 | 0 | 0 | 66 | 100.0 | |
Dec. woodlands | 0 | 0 | 68 | 1 | 0 | 8 | 77 | 88.3 | |
ERC | 0 | 0 | 1 | 74 | 0 | 0 | 75 | 98.7 | |
Water | 0 | 0 | 0 | 0 | 74 | 3 | 77 | 96.1 | |
Wetlands | 0 | 0 | 0 | 0 | 0 | 64 | 64 | 100.0 | |
Total | 75 | 75 | 75 | 75 | 75 | 75 | 450 | 83.3 | |
Producer’s accuracy | 100 | 88 | 90.7 | 98.7 | 98.7 | 85.3 | |||
Overall accuracy | 0.94 | Misclassification rate | 0.94 | Kappa Coefficient | 0.93 | ||||
Multi-Seasonal SVM (Improved)—2017 | |||||||||
Reference Data | User’s Accuracy | ||||||||
Crop | Grass. | Dec. woodland | ERC | Water | Wetlands | Total | |||
Classification Data | Crop fields | 70 | 0 | 2 | 0 | 0 | 1 | 73 | 95.9 |
Grassland | 2 | 74 | 0 | 0 | 0 | 1 | 77 | 96.1 | |
Dec. woodlands | 0 | 1 | 72 | 4 | 0 | 0 | 77 | 93.5 | |
ERC | 0 | 0 | 1 | 71 | 0 | 0 | 72 | 98.6 | |
Water | 0 | 0 | 0 | 0 | 75 | 4 | 79 | 94.9 | |
Wetlands | 3 | 0 | 0 | 0 | 0 | 69 | 72 | 95.8 | |
Total | 75 | 75 | 75 | 75 | 75 | 75 | 450 | ||
Producer’s accuracy | 93.3 | 98.7 | 96 | 94.7 | 100 | 92 | |||
Overall accuracy | 0.96 | Misclassification rate | 0.04 | Kappa Coefficient | 0.95 |
Estimated Area Proportion | Area (acres) | ±95% CI (acres) | Margin of Error | User’s Accuracy (±95% CI) | Producer’s Accuracy | |
---|---|---|---|---|---|---|
Deciduous to ERC | 0.0246 | 3959 | 487 | 12% | 0.96 (±0.04) | 0.86 |
Non-forest to ERC | 0.0264 | 4257 | 2020 | 47% | 0.92 (±0.06) | 0.73 |
ERC lost | 0.0099 | 1587 | 193 | 12% | 0.80 (±0.09) | 0.97 |
ERC stable | 0.0198 | 3187 | 313 | 10% | 0.91 (±0.07) | 0.87 |
Deciduous stable | 0.1000 | 16,104 | 2925 | 18% | 0.93 (±0.05) | 0.86 |
Other | 0.8184 | 131,799 | 3507 | 3% | 0.98 (±0.03) | 0.99 |
Overall accuracy | 0.96 (±0.02) |
Estimated Area Proportion | Area (acres) | ±95% CI (acres) | Margin of Error | User’s Accuracy (±95% CI) | Producer’s Accuracy | |
---|---|---|---|---|---|---|
Deciduous to ERC | 0.0293 | 4281 | 955 | 22% | 0.91 (+ 0.07) | 0.84 |
Non-forest to ERC | 0.0227 | 3322 | 1669 | 50% | 0.95 (+ 0.05) | 0.70 |
ERC lost | 0.0077 | 1133 | 656 | 58% | 0.87 (+ 0.08) | 0.71 |
ERC stable | 0.0005 | 67 | 25 | 37% | 0.88 (+ 0.07) | 0.82 |
Deciduous stable | 0.2226 | 32,549 | 2939 | 9% | 0.92 (+ 0.05) | 0.94 |
Other | 0.7172 | 104,863 | 3184 | 3% | 0.98 (+ 0.03) | 0.98 |
Overall accuracy | 0.96 (±0.02) |
Estimated Area Proportion | Area (acres) | ±95% CI (acres) | Margin of Error | User’s Accuracy (±95% CI) | Producer’s Accuracy | |
---|---|---|---|---|---|---|
Deciduous to ERC | 0.0307 | 4700 | 733 | 16% | 0.81 (±0.09) | 0.88 |
Non-forest to ERC | 0.0123 | 1887 | 173 | 9% | 0.87 (±0.08) | 0.99 |
ERC lost | 0.0034 | 516 | 71 | 14% | 0.81 (±0.09) | 0.95 |
ERC stable | 0.0106 | 1628 | 129 | 8% | 0.89 (±0.07) | 0.99 |
Deciduous stable | 0.1709 | 26,134 | 4616 | 18% | 0.95 (±0.04) | 0.75 |
Other | 0.7720 | 118,062 | 4572 | 4% | 0.95 (±0.04) | 0.99 |
Overall accuracy | 0.95 (±0.03) |
Study Area | ERC cover 1986 | ERC cover 2017 | ERC Increase | ||
---|---|---|---|---|---|
Area | Percent | Into Deciduous Forests | |||
----------------- acres (ac) ---------------- | -------------- (%) -------------- | ||||
Tuttle Creek | 4774 | 11,403 | 6629 | 139% | 48% |
Perry reservoir | 1200 | 7670 | 6470 | 539% | 56% |
Bourbon N. | 2144 | 8215 | 6071 | 283% | 71% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galgamuwa, G.A.P.; Wang, J.; Barden, C.J. Expansion of Eastern Redcedar (Juniperus virginiana L.) into the Deciduous Woodlands within the Forest–Prairie Ecotone of Kansas. Forests 2020, 11, 154. https://doi.org/10.3390/f11020154
Galgamuwa GAP, Wang J, Barden CJ. Expansion of Eastern Redcedar (Juniperus virginiana L.) into the Deciduous Woodlands within the Forest–Prairie Ecotone of Kansas. Forests. 2020; 11(2):154. https://doi.org/10.3390/f11020154
Chicago/Turabian StyleGalgamuwa, G. A. Pabodha, Jida Wang, and Charles J. Barden. 2020. "Expansion of Eastern Redcedar (Juniperus virginiana L.) into the Deciduous Woodlands within the Forest–Prairie Ecotone of Kansas" Forests 11, no. 2: 154. https://doi.org/10.3390/f11020154
APA StyleGalgamuwa, G. A. P., Wang, J., & Barden, C. J. (2020). Expansion of Eastern Redcedar (Juniperus virginiana L.) into the Deciduous Woodlands within the Forest–Prairie Ecotone of Kansas. Forests, 11(2), 154. https://doi.org/10.3390/f11020154