Asymmetric Price Transmission of Hardwood Lumber Imported by China after Imposition of the Comprehensive Commercial Logging Ban in All Natural Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Analysis of Data
2.2. Methodology
2.2.1. The Linear Co-Integration Model
2.2.2. The Threshold Co-Integration Model
2.2.3. Threshold Error Correction Model
3. Results
3.1. Linear Co-Integration Analysis
3.2. Threshold Co-Integration Analysis
3.3. Threshold Error Correction Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- State Forestry Administration in China. The eighth national forest resources inventory. For. Resour. Manag. 2014, 1, 1–2, (Translated title into English). [Google Scholar]
- State Forestry Administration in China. The Report of Forestry Development in China, 1st ed.; China Forestry Publishing House: Beijing, China, 2015; (Translated title into English).
- United Nations Comtrade. Available online: http://comtrade.un.org/db/ (accessed on 10 July 2019).
- Economy Prediction System. Available online: http://www.epsnet.com.cn/index.html (accessed on 10 July 2019).
- Chen, X.; Chinese Society of Forestry; Ju, Q.; Lin, K. Current situation, problems and countermeasures of plantation development in China. World For. Res. 2014, 27, 54–59, (Translated title into English). [Google Scholar] [CrossRef]
- Xue, W. Problems and countermeasures in the quality of plantation in China. Mod. Hortic. 2015, 5, 100–101, (Translated title into English). [Google Scholar] [CrossRef]
- Wang, H.; Guo, J. Status quo of artificial forest in China and its near-natural management. Mod. Agric. Sci. 2008, 15, 124–125, (Translated title into English). [Google Scholar]
- Ghoshray, A. An examination of the relationship between U.S. and Canadian durum wheat prices. Can. J. Agric. Econ. Rev. Can. Agroecon. 2007, 55, 49–62. [Google Scholar] [CrossRef]
- Blinder, A.S.; Canetti, E.R.; Lebow, D.E.; Rudd, J.B. Asking about Prices: A New Approach to Understanding Price Stickiness; Russel Sage Foundation: New York, NY, USA, 1998. [Google Scholar]
- Meyer, J.; Cramon-Taubadel, S. Asymmetric price transmission: A survey. J. Agric. Econ. 2004, 55, 581–611. [Google Scholar] [CrossRef] [Green Version]
- Simioni, M.; Gonzales, F.; Guillotreau, P.; Le Grel, L. Detecting asymmetric price transmission with consistent threshold along the fish supply chain. Can. J. Agric. Econ. Rev. Can. Agroecon. 2013, 61, 37–60. [Google Scholar] [CrossRef] [Green Version]
- Forker, K.O.D. Asymmetry in farm-retail price transmission for major dairy products. Am. J. Agric. Econ. 1987, 69, 285–292. [Google Scholar] [CrossRef]
- Frey, G.; Manera, M. Econometric models of asymmetric price transmission. J. Econ. Surv. 2007, 21, 349–415. [Google Scholar] [CrossRef]
- Peltzman, S. Prices rise faster than they fall. J. Political Econ. 2000, 108, 466–502. [Google Scholar] [CrossRef]
- Shrinivas, A.; Gomez, M.I. Price transmission, asymmetric adjustment and threshold effects in the cotton supply chain: A case study for Vidarbha, India. Agric. Econ. 2016, 47, 435–444. [Google Scholar] [CrossRef]
- Ahn, B.; Lee, H. Vertical price transmission of perishable products: The case of fresh fruits in the Western United States. J. Agric. Resour. Econ. 2015, 40, 405–424. [Google Scholar]
- Durborow, S.L.; Chung, C.; Kim, S. Implications of the 2006 E. coli outbreak on spatial price transmission in the US fresh spinach market. Agribusiness 2017, 33, 475–492. [Google Scholar] [CrossRef]
- Chavas, J.P.; Mehta, A. Price dynamics in a vertical sector: The case of butter. Agric. Econ. 2004, 86, 1078–1093. [Google Scholar] [CrossRef] [Green Version]
- Abdulai, A. Using threshold cointegration to estimate asymmetric price transmission in the Swiss pork market. Appl. Econ. 2002, 34, 679–687. [Google Scholar] [CrossRef]
- Ankamah-Yeboah, I.; Bronnmann, J. Asymmetries in import-retail cost pass-through: Analysis of the seafood value chain in Germany. Aquac. Econ. Manag. 2017, 21, 71–87. [Google Scholar] [CrossRef]
- Jong-Yeol, Y.; Brown, S. An asymmetric price transmission analysis in the U.S. pork market using threshold co-integration analysis. J. Rural Dev. 2018, 41, 41–66. [Google Scholar]
- Alam, M.J.; McKenzie, A.M.; Begum, I.A.; Buysse, J.; Wailes, E.J.; Van Huylenbroeck, G. Asymmetry price transmission in the deregulated rice markets in Bangladesh: Asymmetric error correction model. Agribusiness 2016, 32, 498–511. [Google Scholar] [CrossRef]
- Abdulai, A. Spatial price transmission and asymmetry in the Ghanaian maize market. J. Dev. Econ. 2000, 63, 327–349. [Google Scholar] [CrossRef]
- Ganneval, S. Spatial price transmission on agricultural commodity markets under different volatility regimes. Econ. Model. 2016, 52, 173–185. [Google Scholar] [CrossRef]
- Ghoshray, A. Agricultural economics society prize essay asymmetric price adjustment and the world wheat market. J. Agric. Econ. 2002, 53, 299–317. [Google Scholar] [CrossRef]
- Fiamohe, R.; Seck, P.A.; Alia, D.Y.; Diagne, A. Price transmission analysis using threshold models: An application to local rice markets in Benin and Mali. Food Secur. 2013, 5, 427–438. [Google Scholar] [CrossRef]
- Jamora, N.; von Cramon-Taubadel, S. Transaction cost thresholds in international rice markets. J. Agric. Econ. 2016, 67, 292–307. [Google Scholar] [CrossRef]
- Usman, M.A.; Haile, M.G. Producer to retailer price transmission in cereal markets of Ethiopia. Food Secur. 2017, 9, 815–829. [Google Scholar] [CrossRef]
- Svanidze, M.; Goetz, L.; Djuric, I.; Glauben, T. Food security and the functioning of wheat markets in Eurasia: A comparative price transmission analysis for the countries of Central Asia and the South Caucasus. Food Secur. 2019, 11, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Alemu, Z.G.; Ogundeji, A.A. Price transmission in the South African food market. Agrekon 2010, 49, 433–445. [Google Scholar] [CrossRef]
- Koutroumanidis, T.; Zafeiriou, E.; Arabatzis, G. Asymmetry in price transmission between the producer and the consumer prices in the wood sector and the role of imports: The case of Greece. For. Policy Econ. 2009, 11, 56–64. [Google Scholar] [CrossRef]
- Ahn, B.; Lee, H. Asymmetric transmission between factory and wholesale prices in fiberboard market in Korea. J. For. Econ. 2013, 19, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ning, Z.; Sun, C. Vertical price transmission in timber and lumber markets. J. For. Econ. 2014, 20, 17–32. [Google Scholar] [CrossRef]
- Sun, C. Price dynamics in the import wooden bed market of the United States. For. Policy Econ. 2011, 13, 479–487. [Google Scholar] [CrossRef]
- Guo, X.; Ran, J. Imported Timber Atlas, 2nd ed.; Shanghai Science and Technology: Shanghai, China, 2016; pp. 25–28, 175, 222. [Google Scholar]
- Perron, P. Further evidence on breaking trend functions in macroeconomic variables. J. Econom. 1997, 80, 355–385. [Google Scholar] [CrossRef] [Green Version]
- Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Johansen, S.; Juselius, K. Maximum likelihood estimation and inference on cointegration—With applications to the demand for money. Oxf. Bull. Econ. Stat. 1990, 52, 169–210. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Cointegration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Enders, W. Applied Econometric Time Series, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Enders, W.; Siklos, P.L. Cointegration and threshold adjustment. J. Bus. Econ. Stat. 2001, 19, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Bacon, R.W. Rockets and feathers: The asymmetric speed of adjustment of UK retail gasoline prices to cost changes. Energy Econ. 1991, 13, 211–218. [Google Scholar] [CrossRef]
- Shin, D. Do product prices respond symmetrically to changes in crude oil prices? OPEC Rev. 1994, 18, 137–157. [Google Scholar] [CrossRef]
- Goodwin, B.K.; Holt, M.T. Price transmission and asymmetric adjustment in the U.S. beef sector. Am. J. Agric. Econ. 1999, 81, 630–637. [Google Scholar] [CrossRef]
- Goodwin, B.K.; Piggott, N.E. Spatial market integration in the presence of threshold effects. Am. J. Agric. Econ. 2001, 83, 302–317. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.S. Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Ann. Stat. 1993, 21, 520–533. [Google Scholar] [CrossRef]
- Enders, W.; Granger, C.W.J. Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates. J. Bus. Econ. Stat. 1998, 16, 304–311. [Google Scholar] [CrossRef]
- Balke, N.S.; Fomby, T.B. Threshold cointegration. Int. Econ. Rev. 1997, 38, 627–645. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W.J.; Lee, T.H. Investigation of production, sales and inventory relationships using multicointegration and non-symmetric error correction models. J. Appl. Econom. 1989, 4, S145–S159. [Google Scholar] [CrossRef]
Breakpoint | F-Statistic | Log Likelihood Ratio | |
---|---|---|---|
From Sapelli to Mandshurica | 11/30/2016 | 1.522 *** | 597.324 *** |
From Mandshurica to Laurel | 11/30/2016 | 1.651 *** | 633.557 *** |
Subperiod 1 | KPSS | DF-GLS | Subperiod 2 | KPSS | DF-GLS |
---|---|---|---|---|---|
Level (T,C) | Level (T,sC) | ||||
Sapelli | 0.268 *** | −1.542 | Sapelli | 0.187 ** | −2.257 |
Mandshurica | 0.157 ** | −1.710 | Mandshurica | 0.242 *** | −1.782 |
Laurel | 0.264 *** | −2.130 | Laurel | 0.168 ** | −2.401 |
First difference (T,C) | First difference (T,C) | ||||
ΔSapelli | 0.149 | −9.311 *** | ΔSapelli | 0.112 | −3.088 ** |
ΔMandshurica | 0.228 | −8.883 *** | ΔMandshurica | 0.054 | −2.981 ** |
ΔLaurel | 0.135 | −10.750 *** | ΔLaurel | 0.136 | −3.068 ** |
Sapelli/Mandshurica | Mandshurica/Laurel | 5% Critical Value | 10% Critical Value | |
---|---|---|---|---|
Subperiod 1 | ||||
λtrace | ||||
None | 17.3777 ** | 23.7400 ** | 15.4947 | 13.4288 |
At most 1 | 5.0404 | 4.7252 | 3.8415 | 2.7055 |
λmax | ||||
None | 12.3373 * | 19.0145 ** | 14.2646 | 12.2965 |
At most 1 | 5.0404 | 4.7252 | 3.8415 | 2.7055 |
Subperiod 2 | ||||
λtrace | ||||
None | 31.8877 ** | 20.2612 ** | 15.4947 | 13.4288 |
At most 1 | 5.5698 | 2.6484 | 3.8415 | 2.7055 |
λmax | ||||
None | 26.3179 ** | 17.6127 ** | 14.2646 | 12.2965 |
At most 1 | 5.5698 | 2.6484 | 3.8415 | 2.7055 |
Dependent Variable | Chi-Sq. | Prob. | Lag | Dependent Variable | Chi-Sq. | Prob. | Lag |
---|---|---|---|---|---|---|---|
Subperiod 1 | Subperiod 2 | ||||||
Sapelli/Mandshurica | Sapelli/Mandshurica | ||||||
Mandshurica | 15.4502 ** | 0.0432 | 8 | Mandshurica | 7.9088 ** | 0.0192 | 2 |
Sapelli | 11.1817 | 0.1916 | Sapelli | 11.8903 *** | 0.0026 | ||
Mandshurica/Laurel | Mandshurica/Laurel | ||||||
Laurel | 6.2876 ** | 0.0431 | 2 | Laurel | 17.1264 *** | 0.0043 | 5 |
Mandshurica | 1.3284 | 0.5147 | Mandshurica | 20.7198 *** | 0.0009 |
Sapelli/Mandshurica | Mandshurica/Laurel | |||||
---|---|---|---|---|---|---|
EG | CTAR | CMTAR | EG | CTAR | CMTAR | |
lag | 4 | 4 | 4 | 2 | 4 | 4 |
Threshold | N/A | −0.0295 | −0.0039 | N/A | −0.0760 | −0.0237 |
ρ1 | −0.0528 ** | −0.0141 | −0.0019 | −0.0883 *** | −0.0468 ** | −0.0347 |
(−3.4859) | (−0.7908) | (−0.1129) | (−4.2455) | (−1.7598) | (−1.4892) | |
ρ2 | N/A | −0.0576 *** | −0.0869 *** | N/A | −0.1114 *** | −0.2132 *** |
N/A | (−3.0046) | (−4.1320) | N/A | (−3.4368) | (−4.9987) | |
AIC | −4.999 | −4.996 | −5.009 | −4.227 | −4.237 | −4.259 |
BIC | −4.944 | −4.948 | −4.962 | −4.203 | −4.190 | −4.212 |
QLB (1) | 0.886 | 0.938 | 0.978 | 0.722 | 0.873 | 0.839 |
QLB (4) | 0.999 | 0.919 | 0.996 | 0.152 | 0.999 | 0.999 |
QLB (8) | 0.483 | 0.566 | 0.459 | 0.160 | 0.688 | 0.636 |
Φ (H0: ρ1 = ρ2 = 0) | N/A | 4.729 | 8.537 *** | N/A | 7.032 * | 13.099 *** |
C.V (5%) | N/A | 7.560 | 6.320 | N/A | 7.560 | 6.320 |
C.V (1%) | N/A | 10.180 | 8.470 | N/A | 10.180 | 8.470 |
F (H0: ρ1 = ρ2) | N/A | 2.886 * | 10.411 *** | N/A | 2.567 | 14.451 *** |
[0.090] | [0.001] | [0.110] | [0.000] |
Sapelli/Mandshurica | Mandshurica/Laurel | |||||
---|---|---|---|---|---|---|
EG | CTAR | CMTAR | EG | CTAR | CMTAR | |
lag | 5 | 5 | 5 | 4 | 5 | 5 |
Threshold | N/A | 0.0313 | −0.0028 | N/A | −0.0450 | −0.0037 |
ρ1 | −0.0493 * | −0.0671 *** | −0.0342 ** | −0.0352 * | −0.0083 | −0.0295 *** |
(−3.2289) | (−3.1930) | (−1.9600) | (−3.3327) | (−0.5828) | (−2.4364) | |
ρ2 | N/A | −0.0306 | −0.0991 *** | N/A | −0.0789 *** | −0.0812 *** |
N/A | (−1.4182) | (−3.1936) | N/A | (−5.1361) | (-3.4502) | |
AIC | −7.157 | −7.156 | −7.172 | −5.675 | −5.730 | −5.737 |
BIC | −7.089 | −7.077 | −7.092 | −5.607 | −5.650 | −5.657 |
QLB (1) | 0.709 | 0.697 | 0.801 | 0.523 | 0.910 | 0.740 |
QLB (4) | 0.889 | 0.892 | 0.955 | 0.950 | 0.999 | 0.998 |
QLB (8) | 0.453 | 0.487 | 0.502 | 0.693 | 0.758 | 0.675 |
Φ (H0: ρ1 = ρ2 = 0) | N/A | 5.980 | 6.900 ** | N/A | 13.358 *** | 9.325 *** |
C.V (5%) | N/A | 7.560 | 6.320 | N/A | 7.560 | 6.320 |
C.V (1%) | N/A | 10.180 | 8.470 | N/A | 10.180 | 8.470 |
F (H0: ρ1 = ρ2) | N/A | 1.518 | 3.388 * | N/A | 11.388 *** | 3.672 * |
[0.219] | [0.067] | [0.001] | [0.056] |
Sapelli/Mandshurica | Mandshurica/Laurel | |||||||
---|---|---|---|---|---|---|---|---|
ΔSapelli | ΔMandshurica | ΔMandshurica | ΔLaurel | |||||
Estimate | T-Ratio | Estimate | T-Ratio | Estimate | T-Ratio | Estimate | T-Ratio | |
δ+ | 0.0180 | 1.3570 | 0.0101 | 0.6123 | −0.0007 | −0.0456 | −0.0386 | −1.6225 |
δ− | 0.0164 | 0.9767 | −0.0729 *** | −3.5081 | −0.0265 | −0.8877 | −0.2401 *** | −5.3421 |
α1 | −0.0277 | −0.7850 | −0.1215 *** | −2.7788 | 0.0260 | 0.8455 | −0.2082 *** | −4.4948 |
α2 | 0.0110 | 0.3069 | 0.0208 | 0.4684 | −0.0072 | −0.2318 | −0.1639 *** | −3.5078 |
α3 | 0.0135 | 0.3783 | −0.0089 | −0.2015 | −0.0029 | −0.0925 | −0.1297 *** | −2.7938 |
α4 | 0.0203 | 0.5726 | 0.0512 | 1.1661 | −0.0280 | −0.9247 | −0.0773 * | −1.6960 |
α5 | 0.0628 * | 1.7903 | −0.0869 * | −2.0010 | −0.0634 ** | −2.1843 | 0.0191 | 0.4365 |
β1 | −0.1744 *** | −4.0274 | −0.0239 | −0.4452 | −0.1569 *** | −3.4719 | 0.0168 | 0.2465 |
β2 | −0.0864 ** | −1.9674 | 0.0813 | 1.4943 | 0.0312 | 0.6940 | 0.0899 | 1.3278 |
β3 | −0.0399 | −0.9025 | −0.0385 | −0.7022 | −0.0183 | −0.4078 | 0.0599 | 0.8857 |
β4 | −0.0422 | −0.9560 | −0.0261 | −0.4773 | 0.0467 | 1.0408 | 0.0193 | 0.2861 |
β5 | −0.0079 | −0.1810 | −0.0197 | −0.3657 | −0.0851 * | −1.9289 | −0.0593 | −0.8932 |
AIC | −5.477 | −5.049 | −5.032 | −4.214 | ||||
BIC | −5.382 | -4.955 | −4.938 | −4.120 | ||||
QLB (1) | 0.985 | 0.961 | 0.976 | 0.939 | ||||
QLB (4) | 0.999 | 0.999 | 0.999 | 0.997 | ||||
QLB (8) | 0.996 | 0.987 | 0.953 | 0.967 | ||||
F (H0: δ+ = δ− = 0) | 1.333 | [0.265] | 6.469 ** | [0.017] | 0.395 | [0.674] | 14.923 *** | [0.000] |
F (H0: δ+ = δ−) | 0.006 | [0.938] | 10.323 *** | [0.001] | 0.629 | [0.428] | 16.956 *** | [0.000] |
Sapelli/Mandshurica | Mandshurica/Laurel | |||||||
---|---|---|---|---|---|---|---|---|
ΔSapelli | ΔMandshurica | ΔMandshurica | Δlaurel | |||||
Estimate | T-Ratio | Estimate | T-Ratio | Estimate | T-Ratio | Estimate | T-Ratio | |
δ+ | 0.0518 *** | 3.2707 | −0.0201 | −1.1532 | 0.0074 | 1.2335 | −0.0299 *** | −2.5213 |
δ− | 0.0014 | 0.0482 | −0.0896 *** | −2.7819 | 0.0152 | 1.3188 | −0.0799 *** | −3.4742 |
α1 | −0.1748 *** | −3.4704 | −0.2091 *** | −3.7699 | 0.0370 | 1.312 | −0.1855 *** | −3.3082 |
α2 | −0.1028 ** | −2.1329 | 0.0141 | 0.2653 | −0.0245 | −0.923 | −0.0505 | −0.9548 |
α3 | −0.0688 | −1.4517 | 0.0399 | 0.7633 | 0.0094 | 0.3536 | −0.0597 | −1.1334 |
α4 | −0.0966 ** | −2.0649 | −0.3134 *** | −6.0803 | 0.1044 *** | 3.9733 | 0.1041 ** | 1.9927 |
α5 | 0.0135 | 0.2774 | 0.1105 ** | 2.0543 | −0.0029 | −0.1088 | −0.0291 | −0.5507 |
β1 | −0.1828 *** | −3.2024 | −0.1066 * | −1.6951 | −0.2859 *** | −5.2339 | 0.3977 *** | 3.6602 |
β2 | 0.0281 | 0.4936 | 0.0798 | 1.2709 | 0.0854 | 1.6569 | 0.1628 | 1.5879 |
β3 | −0.1965 *** | −3.533 | −0.3007 *** | −4.9100 | −0.0586 | −1.1384 | −0.0922 | −0.9007 |
β4 | −0.1387 ** | −2.3683 | 0.0310 | 0.4807 | −0.2945 *** | −5.801 | −0.2254 ** | −2.2323 |
β5 | −0.0986 * | −1.7623 | −0.0554 | −0.8983 | 0.0599 | 1.1533 | 0.0988 | 0.9564 |
AIC | −7.377 | −7.184 | −7.114 | −5.739 | ||||
BIC | −7.240 | −7.047 | −6.978 | −5.603 | ||||
QLB (1) | 0.596 | 0.977 | 0.647 | 0.627 | ||||
QLB (4) | 0.958 | 0.897 | 0.782 | 0.984 | ||||
QLB (8) | 0.519 | 0.441 | 0.449 | 0.986 | ||||
F (H0: δ+ = δ− = 0) | 5.349 *** | [0.005] | 4.492 ** | [0.012] | 1.707 | [0.183] | 9.625 *** | [0.000] |
F (H0: δ+ = δ−) | 2.320 | [0.129] | 3.642 * | [0.057] | 0.355 | [0.552] | 3.601 * | [0.059] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Yin, Z.; Gan, J.; Wang, F. Asymmetric Price Transmission of Hardwood Lumber Imported by China after Imposition of the Comprehensive Commercial Logging Ban in All Natural Forests. Forests 2020, 11, 200. https://doi.org/10.3390/f11020200
Yang L, Yin Z, Gan J, Wang F. Asymmetric Price Transmission of Hardwood Lumber Imported by China after Imposition of the Comprehensive Commercial Logging Ban in All Natural Forests. Forests. 2020; 11(2):200. https://doi.org/10.3390/f11020200
Chicago/Turabian StyleYang, Lihua, Zhonghua Yin, Jianbang Gan, and Fang Wang. 2020. "Asymmetric Price Transmission of Hardwood Lumber Imported by China after Imposition of the Comprehensive Commercial Logging Ban in All Natural Forests" Forests 11, no. 2: 200. https://doi.org/10.3390/f11020200
APA StyleYang, L., Yin, Z., Gan, J., & Wang, F. (2020). Asymmetric Price Transmission of Hardwood Lumber Imported by China after Imposition of the Comprehensive Commercial Logging Ban in All Natural Forests. Forests, 11(2), 200. https://doi.org/10.3390/f11020200