Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems
Abstract
:Author Contributions
Funding
Conflicts of Interest
References
- Danneyrolles, V.; Dupuis, S.; Fortin, G.; Leroyer, M.; de Römer, A.; Terrail, R.; Vellend, M.; Boucher, Y.; Laflamme, J.; Bergeron, Y.; et al. Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nat. Commun. 2019, 10, 1265. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Barbier, E.B.; Jones, P.C.; Jones, H.P.; Aronson, J.; López-López, J.A.; McCrackin, M.L.; Meli, P.; Montoya, D.; Rey Benayas, J.M. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 2017, 8, 14163. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef]
- Bradford, J.B.; Birdsey, R.A.; Joyce, L.A.; Ryan, M.G. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests. Glob. Change Biol. 2008, 14, 2882–2897. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Kosunen, M.; Lyytikäinen-Saarenmaa, P.; Ojanen, P.; Blomqvist, M.; Starr, M. Response of soil surface respiration to storm and Ips typographus (L.) disturbance in boreal Norway spruce stands. Forests 2019, 10, 307. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Cao, J.; Zhu, T.; Fan, M.; Ren, M. CO2 transfer characteristics of calcareous humid subtropical forest soils and associated contributions to carbon source and sink in Guilin, southwest China. Forests 2020, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.Q.; Wang, K.L.; Zhang, C.; Yue, Y.M.; Tian, R.C.; Fan, F.D. Spatio-temporal evolution of rocky desertification and its driving forces in karst areas of Northwestern Guangxi, China. Environ. Earth Sci. 2011, 64, 383–393. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, P.; Zhu, T.; Li, Q.; Cao, J. The characteristics of soil C, N, and P stoichiometric ratios as affected by geological background in a karst graben area, southwest China. Forests 2019, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Battye, W.; Aneja, V.P.; Schlesinger, W.H. Is nitrogen the next carbon? Earth's Future 2017, 5, 894–904. [Google Scholar] [CrossRef] [Green Version]
- Reay, D.S.; Dentener, F.; Smith, P.; Grace, J.; Feely, R.A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 2008, 1, 430–437. [Google Scholar] [CrossRef]
- Li, D.; Liu, Q.; Yin, H.; Luo, Y.; Hui, D. Differential responses and controls of soil CO2 and N2O fluxes to experimental warming and nitrogen fertilization in a subalpine coniferous spruce (Picea asperata Mast.) plantation forest. Forests 2019, 10, 808. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liu, X.; Xie, J.; Lyu, M.; Zheng, Y.; You, Z.; Fan, Y.; Lin, C.; Chen, G.; Chen, Y.; et al. Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest. Forests 2019, 10, 435. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Cao, J.; Lan, G.; Liang, Y.; Wang, H.; Li, Q. The influence of land use patterns on soil bacterial community structure in the karst graben basin of Yunnan province, China. Forests 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Mo, B.; Zhou, M.; Zhu, T.; Cao, J. Effects of plum plantation ages on soil organic carbon mineralization in the karst rocky desertification ecosystem of southwest China. Forests 2019, 10, 1107. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Fahey, T.J.; Liang, D.; Jia, Z.; Ma, L. Effects of long-term successive rotations, clear-cutting and stand age of prince rupprecht’s larch (Larix principis-rupprechtii Mayr) on soil quality. Forests 2019, 10, 932. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, S.; Li, Y.; Wang, Q.; Zhong, X.; Yang, Z.; Lin, C.; Yang, Y. Conversion of natural evergreen broadleaved forests decreases soil organic carbon but increases the relative contribution of microbial residue in subtropical China. Forests 2019, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Lin, J.; Dai, Q.; Xu, Y.; Li, H. Evaluation of forest conversion effects on soil erosion, soil organic carbon and total nitrogen based on 137Cs tracer technique. Forests 2019, 10, 433. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fu, S.; Li, J.; Zou, X.; Zhang, W.; Xia, H.; Lin, Y.; Tian, Q.; Zhou, L. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 Flux. Forests 2019, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Chen, B.; Yu, D.; Tam, N.F.Y.; Ye, Y.; Chen, S. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environ. Res. Lett. 2016, 11, 124019. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, J.; Song, W.; Feng, J.; Lin, G. Methane emission from mangrove wetland soils is marginal but can be stimulated significantly by anthropogenic activities. Forests 2018, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hu, S.; Chen, J.; Mueller, K.; Li, Y.; Fu, W.; Lin, Z.; Wang, H. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. J. Soils Sediments 2018, 18, 546–563. [Google Scholar] [CrossRef]
- Criscuoli, I.; Ventura, M.; Sperotto, A.; Panzacchi, P.; Tonon, G. Effect of woodchips biochar on sensitivity to temperature of soil greenhouse gases emissions. Forests 2019, 10, 594. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Fang, H.; Jiang, N.; Feng, W.; Luo, L.; Wang, J.; Wang, H.; Hu, D.; Guo, X.; Zhang, L. Biochar is comparable to dicyandiamide in the mitigation of nitrous oxide emissions from Camellia oleifera Abel. fields. Forests 2019, 10, 1076. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Yim, J.S.; Son, Y.M.; Son, Y.; Kim, R. Estimation of forest carbon stocks for national greenhouse gas inventory reporting in South Korea. Forests 2018, 9, 625. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Chang, S.X. Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems. Forests 2020, 11, 297. https://doi.org/10.3390/f11030297
Cai Y, Chang SX. Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems. Forests. 2020; 11(3):297. https://doi.org/10.3390/f11030297
Chicago/Turabian StyleCai, Yanjiang, and Scott X Chang. 2020. "Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems" Forests 11, no. 3: 297. https://doi.org/10.3390/f11030297
APA StyleCai, Y., & Chang, S. X. (2020). Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems. Forests, 11(3), 297. https://doi.org/10.3390/f11030297