Determining the Distribution and Interaction of Soil Organic Carbon, Nitrogen, pH and Texture in Soil Profiles: A Case Study in the Lancangjiang River Basin, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Distribution Characteristics of SOC, SON, Soil pH and Soil Texture in Soil Profiles
3.1.1. Distribution of SOC, SON Contents
3.1.2. Distribution of pH and C/N Ratio
3.1.3. Soil Texture
3.2. Effects of Soil pH and Soil Texture on the C/N Ratio
3.3. Effects of Soil pH and Soil Texture on SOC Contents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saint-Laurent, D.; Arsenault-Boucher, L. Soil properties and rate of organic matter decomposition in riparian woodlands using the TBI protocol. Geoderma 2020, 358, 10. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, W.; Chen, Y.; Wang, Y.; Cheng, P.; Hou, Y.; Wang, Y.; Xiong, X.; Yang, L. Spatial variation of soil properties and carbon under different land use types on the Chinese Loess Plateau. Sci. Total Environ. 2020, 703, 134946. [Google Scholar] [CrossRef] [PubMed]
- Dignac, M.-F.; Kögel-Knabner, I.; Michel, K.; Matzner, E.; Knicker, H. Chemistry of soil organic matter as related to C: N in Norway spruce forest (Picea abies(L.) Karst.) floors and mineral soils. J. Plant. Nutr. Soil Sci. 2002, 165, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Liu, Z. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma 2019, 337, 1116–1125. [Google Scholar] [CrossRef]
- Curtin, D.; Campbell, C.A.; Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 1998, 30, 57–64. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Wright, D.; Goulding, K.W.T.; Jones, D.L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 2006, 38, 898–911. [Google Scholar] [CrossRef]
- Bååth, E.; Frostegård, Å.; Pennanen, T.; Fritze, H. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 1995, 27, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Shao, M.a.; Jia, X.; Zhang, C. Particle size distribution of soils (0–500cm) in the Loess Plateau, China. Geoderma Reg. 2016, 7, 251–258. [Google Scholar] [CrossRef]
- Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization. Soil Biol. Biochem. 1994, 26, 1221–1231. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Haney, R.L.; Hons, F.M.; Zuberer, D.A. Active fractions of organic matter in soils with different texture. Soil Biol. Biochem. 1996, 28, 1367–1372. [Google Scholar] [CrossRef]
- Ouyang, W.; Wan, X.Y.; Xu, Y.; Wang, X.L.; Lin, C.Y. Vertical difference of climate change impacts on vegetation at temporal-spatial scales in the upper stream of the Mekong River Basin. Sci. Total Environ. 2020, 701, 12. [Google Scholar] [CrossRef] [PubMed]
- Hoke, G.D.; Liu-Zeng, J.; Hren, M.T.; Wissink, G.K.; Garzione, C.N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sci. Lett. 2014, 394, 270–278. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, Z.Q.; Zhang, W.; Tao, Z.H.; Huang, L.; Yang, J.X.; Wu, Q.X.; Liu, C.Q. Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang drainage basins. Environ. Earth Sci. 2016, 75, 18. [Google Scholar] [CrossRef]
- Liu, J.K.; Han, G.L.; Liu, M.; Zeng, J.; Liang, B.; Qu, R. Distribution, Sources and Water Quality Evaluation of the Riverine Solutes: A Case Study in the Lancangjiang River Basin, Tibetan Plateau. Int. J. Environ. Res. Public Health 2019, 16, 4670. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Cui, B.S.; Dong, S.K.; Zhai, H.J.; Liu, Z.Y. Ecological Water Requirement (EWR) Analysis of High Mountain and Steep Gorge (HMSG) River-Application to Upper Lancang-Mekong River. Water Resour. Manag. 2009, 23, 341–366. [Google Scholar]
- Fan, X.M.; Luo, X. Precipitation and Flow Variations in the Lancang-Mekong River Basin and the Implications of Monsoon Fluctuation and Regional Topography. Water 2019, 11, 2086. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.H.; Han, G.L.; Zeng, J.; Liang, B.; Qu, R.; Liu, J.K.; Liu, M. Spatial Variation and Controlling Factors of H and O Isotopes in Lancang River Water, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 4932. [Google Scholar] [CrossRef] [Green Version]
- Costa-Cabral, M.C.; Richey, J.E.; Goteti, G.; Lettenmaier, D.P.; Feldkotter, C.; Snidvongs, A. Landscape structure and use, climate, and water movement in the Mekong River basin. Hydrol. Process. 2008, 22, 1731–1746. [Google Scholar] [CrossRef]
- Li, J.P.; Dong, S.K.; Yang, Z.F.; Peng, M.C.; Liu, S.L.; Li, X.Y. Effects of cascade hydropower dams on the structure and distribution of riparian and upland vegetation along the middle-lower Lancang-Mekong River. Forest Ecol. Manag. 2012, 284, 251–259. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Deng, L.; Dong, S.; Yang, Z.; Liu, Q. Determining the influencing distance of dam construction and reservoir impoundment on land use: A case study of Manwan Dam, Lancang River. Ecol. Eng. 2013, 53, 235–242. [Google Scholar] [CrossRef]
- Durr, H.H.; Meybeck, M.; Durr, S.H. Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Glob. Biogeochem. Cycles 2005, 19, 23. [Google Scholar] [CrossRef]
- Langan, S.J.; Reynolds, B.; Bain, D.C. The calculation of base cation release from mineral weathering in soils derived from Palaeozoic greywackes and shales in upland UK. Geoderma 1996, 69, 275–285. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Liu, Q.; Huang, C.; Li, H.; Wu, C. Distribution Characteristics and Seasonal Variation of Soil Nutrients in the Mun River Basin, Thailand. Int. J. Environ. Res. Public Health 2018, 15, 1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyodo, F.; Tayasu, I.; Konate, S.; Tondoh, J.E.; Lavelle, P.; Wada, E. Gradual enrichment of N-15 with humification of diets in a below-ground food web: Relationship between N-15 and diet age determined using C-14. Funct. Ecol. 2008, 22, 516–522. [Google Scholar] [CrossRef]
- Potapov, A.M.; Goncharov, A.A.; Semenina, E.E.; Korotkevich, A.Y.; Tsurikov, S.M.; Rozanova, O.L.; Anichkin, A.E.; Zuev, A.G.; Samoylova, E.S.; Semenyuk, I.I.; et al. Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. Eur. J. Soil Biol. 2017, 82, 88–97. [Google Scholar] [CrossRef]
- FAO; ISRIC; ISSS. World Reference Base for Soil Resources; World Soil Resources Reports; FAO: Rome, Italy, 1998. [Google Scholar]
- Munsell, A. Munsell Soil Color Charts, revised ed; Macbeth Division of Kollmorgen Instruments: Baltimore, MD, USA, 1990. [Google Scholar]
- Liu, M.; Han, G.; Zhang, Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Qu, R.; Han, G.L.; Liu, M.; Li, X.Q. The Mercury Behavior and Contamination in Soil Profiles in Mun River Basin, Northeast Thailand. Int. J. Environ. Res. Public Health 2019, 16, 4131. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Han, G.; Zhang, Q.; Song, Z. Variations and Indications of δ13CSOC and δ15NSON in Soil Profiles in Karst Critical Zone Observatory (CZO), Southwest China. Sustainability 2019, 11, 2144. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Han, G.; Wu, Q.; Tang, Y. Effects of agricultural alkaline substances on reducing the rainwater acidification: Insight from chemical compositions and calcium isotopes in a karst forests area. Agric. Ecosyst. Environ. 2020, 290, 106782. [Google Scholar] [CrossRef]
- Kachurina, O.M.; Zhang, H.; Raun, W.R.; Krenzer, E.G. Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1 M potassium chloride extraction. Commun. Soil Sci. Plant. Anal. 2000, 31, 893–903. [Google Scholar] [CrossRef]
- Midwood, A.J.; Boutton, T.W. Soil carbonate decomposition by acid has little effect on δ13C of organic matter. Soil Biol. and Biochem. 1998, 30, 1301–1307. [Google Scholar] [CrossRef]
- Navas, A.; Gaspar, L.; Quijano, L.; López-Vicente, M.; Machín, J. Patterns of soil organic carbon and nitrogen in relation to soil movement under different land uses in mountain fields (South Central Pyrenees). Catena 2012, 94, 43–52. [Google Scholar] [CrossRef]
- Han, G.L.; Song, Z.L.; Tang, Y.; Wu, Q.X.; Wang, Z.R. Ca and Sr isotope compositions of rainwater from Guiyang city, Southwest China: Implication for the sources of atmospheric aerosols and their seasonal variations. Atmos. Environ. 2019, 214, 10. [Google Scholar] [CrossRef]
- Vinther, F.P.; Hansen, E.M.; Eriksen, J. Leaching of soil organic carbon and nitrogen in sandy soils after cultivating grass-clover swards. Biol. Fertil. Soils 2006, 43, 12–19. [Google Scholar] [CrossRef]
- Zhou, W.X.; Han, G.L.; Liu, M.; Li, X.Q. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ 2019, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Gan, P.; Chen, A. Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environ. Res. 2019, 172, 159–165. [Google Scholar] [CrossRef]
- Falkengren-Grerup, U.; ten Brink, D.J.; Brunet, J. Land use effects on soil N, P, C and pH persist over 40-80 years of forest growth on agricultural soils. Forest Ecol. Manag. 2006, 225, 74–81. [Google Scholar] [CrossRef]
- Han, G.; Li, F.; Tang, Y. Variations in soil organic carbon contents and isotopic compositions under different land uses in a typical karst area in Southwest China. Geochem. J. 2015, 49, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Yue, F.-J.; Wang, Z.-J.; Wu, Q.; Qin, C.-Q.; Li, S.-L. Quantifying depression trapping effect on rainwater chemical composition during the rainy season in karst agricultural area, southwestern China. Atmos. Environ. 2019, 218, 116998. [Google Scholar] [CrossRef]
- Wan, X.H.; Huang, Z.Q.; He, Z.M.; Yu, Z.P.; Wang, M.H.; Davis, M.R.; Yang, Y.S. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant. Soil 2015, 387, 103–116. [Google Scholar] [CrossRef]
- Xia, D.; Deng, Y.S.; Wang, S.L.; Ding, S.W.; Cai, C.F. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China. Nat. Hazards 2015, 79, 455–478. [Google Scholar] [CrossRef]
- Zhao, P.; Shao, M.A.; Omran, W.; Amer, A.M.M. Effects of erosion and deposition on particle size distribution of deposited farmland soils on the Chinese loess plateau. Rev. Bras. Cienc. Solo 2011, 35, 2135–2144. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.M.; Tang, C.; Chen, Z.L. Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biol. Biochem. 2006, 38, 544–552. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, B.M.; Stegen, J.C.; Kim, M.; Dong, K.; Adams, J.M.; Lee, Y.K. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 2018, 12, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreal, C.M.; Ellert, B.H. Towards a minimum data set to assess soil organic-matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Organic Carbon and Nitrogen Associated with Soil Aggregates and Particle Sizes Under Different Land Uses in Tigray, Northern Ethiopia. Land Degrad. Dev. 2015, 26, 690–700. [Google Scholar] [CrossRef]
- Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 2003, 35, 273–284. [Google Scholar] [CrossRef]
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Ritchie, G.; Dolling, P. The role of organic matter in soil acidification. Soil Res. 1985, 23, 569–576. [Google Scholar] [CrossRef]
- Sims, Z.R.; Nielsen, G.A. Organic Carbon in Montana Soils as Related to Clay Content and Climate. Soil Sci. Soc. Am. J. 1986, 50, 1269–1271. [Google Scholar] [CrossRef]
- Rutherford, P.M.; Juma, N.G. Influence of soil texture on protozoa-induced mineralization of bacterial carbon and nitrogen. Can. J. Soil Sci. 1992, 72, 183–200. [Google Scholar] [CrossRef]
Horizon | Depth (cm) | Colour 1 | Structure 2 | Texture | Roots 3 | Thickness (cm) | Boundary 4 | Other Observation 5 |
---|---|---|---|---|---|---|---|---|
Soil profile LCJ S-1 | ||||||||
A | 0–20 | 7.5 YR 4/6 | Granular | silty loam | M&C | 20 | A&W | Rich in black organic matter |
B1 | 20–90 | 5 YR 6/5 | SB | silty loam | C&M | 70 | A&W | Mottles (F&F&F); Fe minerals |
B2 | 90–120 | 5 YR 7/5 | SB | silty loam | F&F | 30 | A&W | Mottles (F&F&F); Fe minerals |
B3 | 120–160 | 2.5 YR 6/4 | SB | silty loam | F&F | 40 | A&W | Fe minerals |
B/C | 160–240 | 2.5 Y 8/1 | SB | silty loam | N | 80 | -- | Mottles (C&A&D) |
Soil profile LCJ S-2 | ||||||||
A | 0–8 | 2.5 Y 8/3 | Granular | silty loam | M&F | 8 | C&W | Mottles (F&M&D) |
B | 8–110 | 5 YR 6/6 | SB | silty loam | N | 102 | C&S | Mottles (C&A&D); Fe minerals |
B/C | 110–200 | 7.5 YR 5/6 | SB | silty loam | N | 90 | -- | Mottles (M&A&D); granite fragments |
N | Min | Max | Mean (SD) | Coefficient of Variation (CV) | ||
---|---|---|---|---|---|---|
SOC g kg−1 | 30 | 0.77 | 10.13 | 3.87 (2.94) | 0.76 | |
SON g kg−1 | 30 | 0.46 | 2.67 | 1.92 (0.42) | 0.22 | |
pH | 30 | 4.65 | 5.56 | 5.08 (0.28) | 0.06 | |
LCJ S-1 | C/N | 30 | 0.40 | 14.84 | 2.36 (2.82) | 1.19 |
Clay % | 30 | 6 | 24 | 15 (6.06) | 0.41 | |
Silt % | 30 | 61 | 74 | 68 (4.01) | 0.06 | |
Sand % | 30 | 4 | 33 | 17 (9.43) | 0.55 | |
SOC g kg−1 | 26 | 1.37 | 23.78 | 5.19 (4.27) | 0.82 | |
SON g kg−1 | 26 | 0.29 | 2.85 | 0.96 (0.67) | 0.70 | |
pH | 26 | 4.50 | 5.74 | 4.93 (0.39) | 0.08 | |
LCJ S-2 | C/N | 26 | 3.36 | 16.78 | 7.91 (4.37) | 0.55 |
Clay % | 26 | 3 | 19 | 12 (4.88) | 0.40 | |
Silt % | 26 | 29 | 79 | 63 (10.40) | 0.16 | |
Sand % | 26 | 4 | 68 | 25 (14.30) | 0.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Han, G.; Liu, M.; Zeng, J.; Liang, B.; Liu, J.; Qu, R. Determining the Distribution and Interaction of Soil Organic Carbon, Nitrogen, pH and Texture in Soil Profiles: A Case Study in the Lancangjiang River Basin, Southwest China. Forests 2020, 11, 532. https://doi.org/10.3390/f11050532
Zhou W, Han G, Liu M, Zeng J, Liang B, Liu J, Qu R. Determining the Distribution and Interaction of Soil Organic Carbon, Nitrogen, pH and Texture in Soil Profiles: A Case Study in the Lancangjiang River Basin, Southwest China. Forests. 2020; 11(5):532. https://doi.org/10.3390/f11050532
Chicago/Turabian StyleZhou, Wenxiang, Guilin Han, Man Liu, Jie Zeng, Bin Liang, Jinke Liu, and Rui Qu. 2020. "Determining the Distribution and Interaction of Soil Organic Carbon, Nitrogen, pH and Texture in Soil Profiles: A Case Study in the Lancangjiang River Basin, Southwest China" Forests 11, no. 5: 532. https://doi.org/10.3390/f11050532
APA StyleZhou, W., Han, G., Liu, M., Zeng, J., Liang, B., Liu, J., & Qu, R. (2020). Determining the Distribution and Interaction of Soil Organic Carbon, Nitrogen, pH and Texture in Soil Profiles: A Case Study in the Lancangjiang River Basin, Southwest China. Forests, 11(5), 532. https://doi.org/10.3390/f11050532