Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Field Data and Stand Volume Estimation
2.2.2. SPOT 6 Image and Processing
2.2.3. Spectral Vegetation Indices and Texture Parameters
2.2.4. Optimum Window Selection
2.3. Machine Learning Algorithms (MLAs)
2.3.1. Classification and Regression Tree (CART)
2.3.2. Support Vector Machine (SVM)
2.3.3. Artificial Neural Network (ANN)
2.3.4. Random Forest (RF)
2.4. Model Testing and Comparison
3. Results
3.1. Effects of Moving Window Size on the Precision of GSV
3.2. Performance of CART, SVM, ANN, and RF
3.3. Performance of Spectral, Texture, and Fusion of Spectral and Texture Information
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Li, C.; Sun, Z.; Jiang, L.; Fang, J. Tree Height Explains Stand Volume of Closed-Canopy Stands: Evidence from Forest Inventory Data of China. For. Ecol. Manag. 2019, 438, 51–56. [Google Scholar] [CrossRef]
- Ioki, K.; Imanishi, J.; Sasaki, T.; Morimoto, Y.; Katsunori Kitada, K. Estimating Stand Volume in Broad-Leaved Forest Using Discrete-Return Lidar: Plot-Based Approach. Landsc. Ecol. Eng. 2010, 6, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of Machine Learning Algorithms for Forest Parameter Estimations and Application for Forest Quality Assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of Single-Date and Multi-Seasonal Spatial and Spectral Information of Sentinel-2 Imagery to Assess Growing Stock Volume of a Mediterranean Forest. Int. J. Appl. Earth Observ. Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Zhou, J.J.; Zhao, Z.; Zhao, J.; Zhao, Q.; Wang, F.; Wang, H. A Comparison of Three Methods for Estimating the Lai of Black Locust (Robinia Pseudoacacia L.) Plantations on the Loess Plateau, China. Int. J. Remote Sens. 2014, 35, 171–188. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, F.; Zhao, J.; Zhou, J.; Yu, S.; Zhao, Z. Estimating Forest Canopy Cover in Black Locust (Robinia Pseudoacacia L.) Plantations on the Loess Plateau Using Random Forest. Forests 2018, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Brosofske, K.D.; Froese, R.E.; Falkowski, M.J.; Banskota, A. A Review of Methods for Mapping and Prediction of Inventory Attributes for Operational Forest Management. For. Sci. 2014, 60, 733–756. [Google Scholar] [CrossRef]
- Motlagh, M.G.; Kafaky, S.B.; Mataji, A.; Akhavan, R. Estimating and Mapping Forest Biomass Using Regression Models and Spot-6 Images (Case Study: Hyrcanian Forests of North of Iran). Environ. Monit. Assess. 2018, 190, 352. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T. Understanding Seasonal Dynamics of Invasive Water Hyacinth (Eichhornia Crassipes) in the Greater Letaba River System Using Sentinel-2 Satellite Data. Gisci. Remote Sens. 2019, 56, 1355–1377. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Denka, S.; Cooper, H.; Mishra, D.R. Quantification of Sawgrass Marsh Aboveground Biomass in the Coastal Everglades Using Object-Based Ensemble Analysis and Landsat Data. Remote Sens. Environ. 2018, 204, 366–379. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Eckert, S. Improved Forest Biomass and Carbon Estimations Using Texture Measures from Worldview-2 Satellite Data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Pu, R.; Cheng, J. Mapping Forest Leaf Area Index Using Reflectance and Textural Information Derived from Worldview-2 Imagery in a Mixed Natural Forest Area in Florida, Us. Int. J. Appl. Earth Observ. Geoinf. 2015, 42, 11–23. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. Evaluating Seasonal Effect on Forest Leaf Area Index Mapping Using Multi-Seasonal High Resolution Satellite Pleiades Imagery. Int. J. Appl. Earth Observ. Geoinf. 2019, 80, 268–279. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of Leaf Area Index in Different Vegetation Types Using High Resolution Satellite Data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation. Isprs J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Hlatshwayo, S.T.; Mutanga, O.; Lottering, R.T.; Kiala, Z.; Ismail, R. Mapping Forest Aboveground Biomass in the Reforested Buffelsdraai Landfill Site Using Texture Combinations Computed from Spot-6 Pan-Sharpened Imagery. Int. J. Appl. Earth Observ. Geoinfor. 2019, 74, 65–77. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, R.Y.; Sun, M.; Di, T.T.; Wang, S.; Zhai, J.; Zhao, Z. The Effects of Glcm Parameters on Lai Estimation Using Texture Values from Quickbird Satellite Imagery. Sci. Rep. 2017, 7, 1–2. [Google Scholar] [CrossRef]
- Quan, W.; Ding, G. Root Tip Structure and Volatile Organic Compound Responses to Drought Stress in Masson Pine (Pinus massoniana Lamb.). Acta Physiol. Plant. 2017, 39, 258. [Google Scholar] [CrossRef]
- Zhang, R.; Ding, G. Seasonal Variation of Soil Carbon and Nitrogen under Five Typical Pinus Massoniana Forests. Chem. Ecol. 2017, 33, 543–559. [Google Scholar] [CrossRef]
- Du, M.; Ding, G.; Cai, Q. The Transcriptomic Responses of Pinus massoniana to Drought Stress. Forests 2018, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W. Volume Estimating Model of Pinus massioniana Lamb in the Middle of Guizhou Based on 3s Technolog. For. Inventory Plan. 2015, 40, 13–18. (In Chinese) [Google Scholar]
- Jiang, W. The Research of Estimating Pinus massioniana Lamb Volume in the Middle of Guizhou Based on Landsat8 Data—Taking Guiyang as an Example. Master’s Thesis, Guizhou University, Guizhou, China, 2015. (In Chinese). [Google Scholar]
- Jia, X.; Bi, J.; Zhou, Z.; Liu, X.; Gao, D.; Guo, G.; Zhou, H. Water—Holding Capacity of Litter and Soil under Major Pure Plantation in Hilly Region of Central Hubei. J. Huazhong Agric. Univ. 2013, 3, 39–44. (In Chinese) [Google Scholar]
- Ye, Y.; Ling, Y.; Zhuang, E. Compilation of Binary Standing Timber Volume Table of Pinus massoniana in Hubei Province. Cent. South For. Inventory Plan. 1996, 3, 6–8. (In Chinese) [Google Scholar]
- Zhang, Z.; He, M. The Growth and Growing Model of Pinus massoniana Plantation. J. Anhui Agric. Coll. 1992, 19, 202–208. (In Chinese) [Google Scholar]
- Yuan, J.; Niu, Z.; Wang, X. Atmospheric Correction of Hyperion Hyperspectral Image Based on Flaash. Spectrosc. Spectr. Anal. 2009, 29, 1181–1185. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (Arvi) for Eos-Modis. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Huete, A.; Justice, C.; Liu, H. Development of Vegetation and Soil Indexes for Modis-Eos. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Qi, J.; Kerr, Y.H.; Moran, M.S.; Weltz, M.; Huete, A.R.; Sorooshian, S.; Bryant, R.B. Leaf Area Index Estimates Using Remotely Sensed Data and Brdf Models in a Semiarid Region. Remote Sens. Environ. 2000, 73, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Goddard Space Flight Center Third ERTS-1 Symp. 1973, 351, 309. [Google Scholar]
- Gong, P.; Pu, R.; Biging, G.S.; Larrieu, M.R. Estimation of Forest Leaf Area Index Using Vegetation Indices Derived from Hyperion Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A Soil-Adjusted Vegetation Index (Savi). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Sarker, L.R.; Nichol, J.E. Improved Forest Biomass Estimates Using Alos Avnir-2 Texture Indices. Remote Sens. Environ. 2011, 115, 968–977. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. Isprs J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M.J. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naive Bayes Models. Math. Probl. Eng. 2012, 2012, 974638. [Google Scholar] [CrossRef] [Green Version]
- Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of Prediction Capability of the Artificial Neural Networks for Mapping Landslide Susceptibility in the Turbolo River Catchment (Northern Calabria, Italy). Catena 2014, 113, 236–250. [Google Scholar] [CrossRef]
- Wang, H.; Lu, K.; Pu, R. Mapping Robinia pseudoacacia Forest Health in the Yellow River Delta by Using High-Resolution Ikonos Imagery and Object-Based Image Analysis. J. Appl. Remote Sens. 2016, 10, 045022. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Coburn, C.A.; Roberts, A.C. A Multiscale Texture Analysis Procedure for Improved Forest Stand Classification. Int. J. Remote Sens. 2004, 25, 4287–4308. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.J.; Zao, Z.; Zhao, Q.; Zhao, J.; Wang, H. Quantification of Aboveground Forest Biomass Using Quickbird Imagery, Topographic Variables, and Field Data. J. Appl. Remote Sens. 2013, 7, 073484. [Google Scholar] [CrossRef]
- Nichol, J.E.; Sarker, M.L. Improved Biomass Estimation Using the Texture Parameters of Two High-Resolution Optical Sensors. IEEE Trans. Geosci. Remote Sens. 2011, 49, 930–948. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H.; Magdon, P.; Kleinn, C.; Flessa, H. Estimating Aboveground Carbon in a Catchment of the Siberian Forest Tundra: Combining Satellite Imagery and Field Inventory. Remote Sens. Environ. 2009, 113, 518–531. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M. Exploring Tm Image Texture and Its Relationships with Biomass Estimation in Rondonia, Brazilian Amazon. Acta Amazonica 2005, 35, 249–257. [Google Scholar] [CrossRef]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image Texture as a Remotely Sensed Measure of Vegetation Structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- Gómez, C.; Wulder, M.A.; Montes, F.; Delgado, J.A. Delgado. Forest Structural Diversity Characterization in Mediterranean Pines of Central Spain with Quickbird-2 Imagery and Canonical Correlation Analysis. Can. J. Remote Sens. 2011, 37, 628–642. [Google Scholar] [CrossRef]
- Dang, A.T.; Nandy, S.; Srinet, R.; Luong, N.V.; Ghosh, S.; Kumar, A.S. Forest Aboveground Biomass Estimation Using Machine Learning Regression Algorithm in Yok Don National Park, Vietnam. Ecol. Informa. 2019, 50, 24–32. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zeng, W.; Song, J. Comparison and Evaluation of Three Methods for Estimating Forest above Ground Biomass Using Tm and Glas Data. Remote Sens. 2017, 9, 341. [Google Scholar] [CrossRef] [Green Version]
- Srinet, R.; Nandy, S.; Patel, N.R. Estimating Leaf Area Index and Light Extinction Coefficient Using Random Forest Regression Algorithm in a Tropical Moist Deciduous Forest, India. Ecol. Informa. 2019, 52, 94–102. [Google Scholar] [CrossRef]
- Cooner, A.J.; Shao, Y.; Campbell, J.B. Campbell. Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake. Remote Sens. 2016, 8, 868. [Google Scholar] [CrossRef] [Green Version]
- Pham, L.T.; Brabyn, L. Monitoring Mangrove Biomass Change in Vietnam Using Spot Images and an Object-Based Approach Combined with Machine Learning Algorithms. ISPRS J. Photogramm. Remote Sens. 2017, 128, 86–97. [Google Scholar] [CrossRef]
- Shataee, S.; Kalbi, S.; Fallah, A.; Pelz, D. Forest Attribute Imputation Using Machine-Learning Methods and Aster Data: Comparison of K-Nn, Svr and Random Forest Regression Algorithms. Int. J. Remote Sens. 2012, 33, 6254–6280. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Lunetta. Comparison of Support Vector Machine, Neural Network, and Cart Algorithms for the Land-Cover Classification Using Limited Training Data Points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards Jr, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Avitabile, V.; Camia, A. An Assessment of Forest Biomass Maps in Europe Using Harmonized National Statistics and Inventory Plots. For. Ecol. Manag. 2018, 409, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Mas, J.F.; Flores, J.J. The Application of Artificial Neural Networks to the Analysis of Remotely Sensed Data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest Classification of Mediterranean Land Cover Using Multi-Seasonal Imagery and Multi-Seasonal Texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
No. of Plots | Density (Stem ha−1) | Average DBH (cm) | Average Height (m) | GSV (m3 ha−1) | LAI | Canopy Density | Aspect | Slope | Elevation |
---|---|---|---|---|---|---|---|---|---|
1 | 825 | 18.4 | 15.6 | 170.47 | 4.14 | 0.5 | Shady | 3° | 95.0 |
2 | 775 | 17.2 | 13.1 | 119.98 | 3.40 | 0.5 | Shady | 4° | 95.2 |
3 | 525 | 19.3 | 13.1 | 98.96 | 4.21 | 0.4 | Shady | 0° | 83.1 |
4 | 2400 | 9.3 | 5.4 | 50.84 | 5.30 | 0.8 | Sunny | 2° | 65.9 |
5 | 1375 | 10.3 | 5.6 | 35.95 | 5.24 | 0.8 | Sunny | 2° | 73.9 |
6 | 2450 | 9.4 | 4.8 | 47.67 | 4.65 | 0.8 | Sunny | 4° | 77.6 |
7 | 2175 | 10.2 | 5.9 | 59.00 | 5.25 | 0.8 | Sunny | 1° | 83.4 |
8 | 2775 | 9.0 | 5.2 | 53.62 | 5.22 | 0.8 | Sunny | 3° | 82.0 |
9 | 1350 | 22.3 | 18.0 | 234.93 | 3.33 | 0.4 | Sunny | 1° | 79.1 |
10 | 2925 | 8.2 | 4.7 | 42.98 | 6.37 | 0.9 | Sunny | 2° | 93.7 |
11 | 1850 | 20.2 | 15.6 | 249.51 | 5.53 | 0.6 | Sunny | 1° | 110.4 |
12 | 900 | 13.9 | 9.5 | 70.46 | 5.23 | 0.7 | Shady | 2° | 94.3 |
13 | 1200 | 8.4 | 5.2 | 10.20 | 5.50 | 0.8 | Sunny | 1° | 87.7 |
14 | 1400 | 6.7 | 4.5 | 10.38 | 7.08 | 0.9 | Sunny | 3° | 110.2 |
15 | 900 | 19.0 | 11.8 | 185.77 | 3.98 | 0.5 | Sunny | 3° | 120.5 |
16 | 900 | 19.3 | 12.6 | 209.23 | 3.39 | 0.5 | Sunny | 3° | 109.6 |
17 | 425 | 27.3 | 14.9 | 175.58 | 4.51 | 0.5 | Shady | 2° | 91.2 |
18 | 800 | 17.4 | 10.1 | 143.82 | 5.46 | 0.7 | Shady | 1° | 88.8 |
19 | 375 | 26.9 | 14.3 | 185.99 | 4.24 | 0.6 | Shady | 4° | 95.1 |
20 | 600 | 20.3 | 13.7 | 139.56 | 2.91 | 0.4 | Shady | 3° | 116.7 |
21 | 1300 | 26.2 | 16.2 | 270.60 | 6.13 | 0.8 | Shady | 2° | 93.7 |
22 | 650 | 20.4 | 15.4 | 164.76 | 2.58 | 0.4 | Shady | 5° | 128.1 |
23 | 625 | 19.5 | 15.8 | 150.89 | 2.35 | 0.4 | Shady | 4° | 124.1 |
24 | 500 | 21.9 | 14.2 | 137.85 | 5.08 | 0.7 | Shady | 1° | 88.6 |
25 | 550 | 22.0 | 14.4 | 199.61 | 4.51 | 0.7 | Shady | 2° | 91.8 |
26 | 675 | 28.3 | 16.8 | 162.44 | 5.81 | 0.7 | Shady | 0° | 104.6 |
27 | 435 | 27.1 | 18.2 | 225.16 | 3.96 | 0.6 | Shady | 2° | 88.8 |
28 | 450 | 22.1 | 16.5 | 133.50 | 2.52 | 0.4 | Sunny | 8° | 91.0 |
29 | 425 | 25.8 | 17.6 | 172.23 | 2.84 | 0.4 | Sunny | 5° | 99.7 |
30 | 475 | 18.7 | 14.7 | 140.05 | 4.52 | 0.6 | Sunny | 0° | 101.8 |
31 | 925 | 18.2 | 15.8 | 222.18 | 3.47 | 0.5 | Sunny | 2° | 114.7 |
32 | 450 | 25.4 | 16.6 | 155.50 | 2.58 | 0.4 | Sunny | 0° | 111.0 |
33 | 375 | 24.5 | 19.5 | 29.23 | 3.66 | 0.5 | Shady | 2° | 115.4 |
34 | 425 | 34.2 | 20.4 | 290.30 | 3.05 | 0.6 | Shady | 5° | 121.4 |
35 | 275 | 29.2 | 22.8 | 193.28 | 3.54 | 0.5 | Shady | 1° | 115.5 |
36 | 350 | 31.6 | 21.1 | 175.27 | 3.89 | 0.6 | Shady | 2° | 121.4 |
37 | 375 | 27.1 | 20.4 | 212.70 | 5.55 | 0.7 | Shady | 1° | 108.0 |
38 | 300 | 32.1 | 20.1 | 168.31 | 3.61 | 0.5 | Shady | 1° | 94.5 |
39 | 1875 | 13.7 | 10.1 | 54.78 | 6.08 | 0.8 | Sunny | 3° | 190.1 |
40 | 725 | 22.0 | 16.9 | 219.12 | 3.16 | 0.6 | Shady | 0° | 145.7 |
41 | 725 | 21.8 | 17.5 | 221.66 | 3.59 | 0.6 | Sunny | 0° | 150.2 |
42 | 525 | 23.7 | 18.4 | 106.95 | 5.31 | 0.7 | Sunny | 5° | 164.9 |
43 | 400 | 31.7 | 18.5 | 193.38 | 2.24 | 0.4 | Sunny | 7° | 99.4 |
44 | 325 | 30.6 | 18.1 | 208.49 | 3.31 | 0.6 | Shady | 2° | 95.0 |
45 | 500 | 26.9 | 16.5 | 222.52 | 4.58 | 0.6 | Shady | 5° | 86.8 |
46 | 1000 | 5.2 | 5.2 | 38.31 | 5.30 | 0.9 | Sunny | 3° | 97.7 |
47 | 600 | 20.5 | 16.2 | 165.05 | 6.28 | 0.9 | Shady | 4° | 110.3 |
48 | 350 | 27.2 | 16.9 | 166.20 | 4.24 | 0.7 | Shady | 2° | 144.4 |
49 | 900 | 19.3 | 12.6 | 209.24 | 3.39 | 0.5 | Sunny | 3° | 109.6 |
50 | 650 | 8.2 | 5.2 | 41.41 | 5.18 | 0.8 | Sunny | 2° | 98.5 |
51 | 775 | 8.7 | 5.4 | 57.26 | 5.97 | 0.8 | Sunny | 1° | 91.1 |
52 | 825 | 9.0 | 4.0 | 52.00 | 7.34 | 0.9 | Shady | 3° | 98.5 |
53 | 750 | 9.5 | 5.0 | 61.91 | 7.60 | 0.8 | Shady | 1° | 107.9 |
54 | 775 | 7.8 | 5.5 | 52.97 | 5.50 | 0.8 | Shady | 7° | 96.8 |
55 | 1000 | 22.1 | 16.5 | 250.98 | 6.08 | 0.8 | Shady | 1° | 110.6 |
56 | 575 | 7.7 | 5.2 | 35.46 | 7.34 | 0.9 | Shady | 1° | 100.1 |
57 | 1450 | 11.0 | 8.2 | 69.46 | 3.33 | 0.4 | Sunny | 6° | 121.0 |
58 | 400 | 20.5 | 14.7 | 163.53 | 1.42 | 0.4 | Sunny | 5° | 100.0 |
59 | 400 | 26.4 | 17.1 | 178.21 | 1.95 | 0.5 | Sunny | 0° | 92.5 |
60 | 1850 | 10.6 | 9.6 | 89.74 | 4.24 | 0.6 | Shady | 4° | 90.5 |
61 | 2075 | 9.6 | 9.1 | 81.48 | 1.24 | 0.4 | Sunny | 4° | 115.0 |
62 | 875 | 20.6 | 21.4 | 319.82 | 2.17 | 0.5 | Sunny | 4° | 102.5 |
63 | 400 | 15.6 | 8.2 | 26.41 | 2.04 | 0.4 | Sunny | 2° | 95.6 |
64 | 750 | 13.4 | 8.1 | 33.16 | 2.08 | 0.4 | Shady | 3° | 97.8 |
65 | 1000 | 19.2 | 11.2 | 184.09 | 2.20 | 0.5 | Sunny | 0° | 96.5 |
66 | 375 | 23.5 | 19.4 | 153.87 | 3.66 | 0.6 | Shady | 3° | 97.6 |
67 | 675 | 17.1 | 17.5 | 145.46 | 3.81 | 0.7 | Shady | 2° | 95.5 |
68 | 925 | 28.9 | 24.9 | 275.53 | 2.03 | 0.8 | Sunny | 2° | 98.0 |
Spectral Vegetation Indices (SVIs) | Formula |
---|---|
1. Atmospherically Resistant Vegetation Index (ARVI) [31] | |
2. Difference Vegetation Index (DVI) [32] | |
3. Enhanced Vegetation Index (EVI) [33] | |
4. Modified Soil Adjusted Vegetation Index (MSAVI) [34] | |
5. Normalized Difference Vegetation Index (NDVI) [35] | |
6. Non-linear Vegetation Index (NLI) [36] | |
7. Soil Adjusted Vegetation Index (SAVI) [37] | |
8. Simple Ratio (SR) [38] |
Grey Level Co-Occurrence Matrix Based Texture Parameter Estimation | Formula |
---|---|
1. Mean (MEAN) | |
2. Homogeneity (HOM) | |
3. Contrast (CON) | |
4. Dissimilarity (DIS) | |
5. Entropy (ENT) | |
6. Variance (VAR) | |
7. Angular Second Moment (ASM) | |
8. Correlation (COR) | Here, i and j are the row and column numbers. N is the number of pixels that are summed. μi, μj, , and are the means and standard deviations of Pi and Pj. P(i, j) is the normalized cooccurrence matrix. |
Methods | Window Sizes | R2 | RMSE (m3/ha) | rRMSE (%) |
---|---|---|---|---|
CART | 3 × 3 | 0.77 | 36.78 | 29.43% |
5 × 5 | 0.76 | 36.61 | 29. 29% | |
7 × 7 | 0.78 | 37.71 | 30.17% | |
9 × 9 | 0.68 | 42.95 | 34.36% | |
11 × 11 | 0.68 | 42.49 | 33.99% | |
13 × 13 | 0.43 | 60.06 | 48.03% | |
15 × 15 | 0.57 | 50.59 | 40.47% | |
SVM | 3 × 3 | 0.72 | 40.07 | 32.05% |
5 × 5 | 0.73 | 39.64 | 31.71% | |
7 × 7 | 0.64 | 45.64 | 36.51% | |
9 × 9 | 0.71 | 41.44 | 33.16% | |
11 × 11 | 0.68 | 43.81 | 35.05% | |
13 × 13 | 0.67 | 44.57 | 35.65% | |
15 × 15 | 0.67 | 44.70 | 35.76% | |
ANN | 3 × 3 | 0.73 | 39.60 | 31.45% |
5 × 5 | 0.73 | 39.92 | 31.94% | |
7 × 7 | 0.61 | 49.29 | 39.43% | |
9 × 9 | 0.65 | 46.90 | 37.54% | |
11 × 11 | 0.70 | 42.99 | 34.39% | |
13 × 13 | 0.77 | 38.19 | 30.55% | |
15 × 15 | 0.78 | 35.78 | 28.63% | |
RF | 3 × 3 | 0.78 | 36.71 | 29.37% |
5 × 5 | 0.84 | 35.96 | 28.77% | |
7 × 7 | 0.75 | 42.54 | 34.03% | |
9 × 9 | 0.72 | 43.35 | 34.67% | |
11 × 11 | 0.66 | 47.36 | 37.89% | |
13 × 13 | 0.61 | 51.25 | 41.00% | |
15 × 15 | 0.74 | 42.35 | 33.88% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhou, Z.; Zhao, Q.; Han, Z.; Wang, P.; Xu, J.; Dian, Y. Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image. Forests 2020, 11, 540. https://doi.org/10.3390/f11050540
Zhou J, Zhou Z, Zhao Q, Han Z, Wang P, Xu J, Dian Y. Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image. Forests. 2020; 11(5):540. https://doi.org/10.3390/f11050540
Chicago/Turabian StyleZhou, Jingjing, Zhixiang Zhou, Qingxia Zhao, Zemin Han, Pengcheng Wang, Jie Xu, and Yuanyong Dian. 2020. "Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image" Forests 11, no. 5: 540. https://doi.org/10.3390/f11050540
APA StyleZhou, J., Zhou, Z., Zhao, Q., Han, Z., Wang, P., Xu, J., & Dian, Y. (2020). Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image. Forests, 11(5), 540. https://doi.org/10.3390/f11050540