Antioxidant Properties of Green Coffee Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Method of Preparation of Green Coffee Extracts for Antioxidant Analysis
2.3. Measurement Methods
2.3.1. Chromatographic Analysis
2.3.2. FTIR (Fourier Transform Infrared) Spectroscopy and UV-Vis (Ultraviolet-Visible) Spectroscopy
2.3.3. Cyclic and Differential Pulse Voltammetry
2.3.4. Antioxidant Activity Tested Using ABTS and DPPH Procedure
2.3.5. Examination of Reduction of Transition Metal Ions by FRAP and CUPRAC Procedures
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chromatographic Analysis of Green Coffee
3.1.1. Organic Compounds in Hexane Extract of Beans of Green Coffee
3.1.2. Organic Compounds in Methanol Extract of Beans of Green Coffee
3.2. FTIR (Fourier Transform Infrared) Spectroscopy and UV-Vis (Ultraviolet-Visible) Spectroscopy
3.3. The Electrochemical Behavior of Green Coffee Extract
3.4. Antioxidant Capacity of Green Coffe Extracts
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dziki, D.; Gawlik-Dziki, U.; Pecio, Ł.; Różyło, R.; Świeca, M.; Krzykowski, A.; Rudy, S. Ground green coffee beans as a functional food supplement—Preliminary study. LWT Food Sci. Technol. 2015, 63, 691–699. [Google Scholar] [CrossRef]
- Palmieri, M.G.S.; Cruz, L.T.; Bertges, F.S.; Húngaro, H.M.; Batista, L.R.; Da Silva, S.S.; Fonseca, M.J.V.; Rodarte, M.P.; Vilela, F.M.P.; Do Amaral, M.D.P.H. Enhancement of antioxidant properties from green coffee as promising ingredient for food and cosmetic industries. Biocatal. Agric. Biotechnol. 2018, 16, 43–48. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Latos-Brozio, M.; Zaborski, M. Characteristics of juglone (5-hydroxy-1,4,-naphthoquinone) using voltammetry and spectrophotometric methods. Food Chem. 2019, 301, 125279. [Google Scholar] [CrossRef] [PubMed]
- Chrzescijanska, E.; Wudarska, E.; Kusmierek, E.; Rynkowski, J. Study of acetylsalicylic acid electroreduction behavior at platinum electrode. J. Electroanal. Chem. 2014, 713, 17–21. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Escudero-Gilete, M.L.; Hernández-Hierroa, J.M.; Herediaa, F.J.; Hernanz, D. Cyclic voltammetry to evaluate the antioxidant potential in winemaking byproducts. Talanta 2017, 165, 211–215. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Latos, M.; Zaborski, M. Influence of hydroxyl substitution on flavanone antioxidants properties. Food Chem. 2017, 215, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Cabrita, L.; Boas, M.V.; Carvalho, A.M.; Ferreira, I.C.F.R. Chemical. biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 2011, 127, 1600–1608. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Kosmalska, A.; Zaborski, M. Antioxidant activity determination in Sencha and Gun Powder green tea extracts with the application of voltammetry and UV-VIS spectrophotometry. Comptes Rendus Chim. 2012, 15, 424–427. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Kosmalska, A.; Zaborski, M. Characteristics of compounds in hops using cyclic voltammetry. UV-VIS. FTIR and GC-MS analysis. Food Chem. 2014, 156, 353–361. [Google Scholar] [CrossRef]
- Hoyos-Arbeláez, J.; Vázquez, M.; Contreras-Calderón, J. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chem. 2017, 221, 1371–1381. [Google Scholar] [CrossRef]
- Vicentini, F.C.; Raymundo-Pereira, P.A.; Janegitz, B.C.; Machado, S.A.S.; Fatibello-Filho, O. Nanostructured carbon black for simultaneous sensing in biologicalfluids. Sens. Actuators B 2016, 227, 610–618. [Google Scholar] [CrossRef]
- Rebelo, M.J.; Rego, R.; Ferreira, M.; Oliveira, M.C. Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods. Food Chem. 2013, 141, 566–573. [Google Scholar] [CrossRef]
- Brett, C.M.A.; Brett, A.M.O. Electrochemistry—Principles, Methods and Applications; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Wudarska, E.; Chrzescijanska, E.; Kusmierek, E.; Rynkowski, J. Voltammetric study of the behaviour of N-acetyl-p-aminophenol in aqueous solutions at a platinum electrode. Comptes Rendus Chim. 2015, 18, 993–1000. [Google Scholar] [CrossRef]
- Gritzner, G.; Kuta, J. Recommendations on reporting electrode potentials in nonaqueous solvents. Pure Appl. Chem. 1984, 56, 461–466. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Masek, A.; Chrzescijanska, E.; Zaborski, M. Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry. Food Chem. 2011, 127, 699–704. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Latos, M.; Zaborski, M.; Podsedek, A. Antioxidant and antiradical properties of green tea extract compounds. Int. J. Electrochem. Sci. 2017, 12, 6600–6610. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Latos, M.; Kosmalska, A. Electrochemical and spectrophotometric characterization of the propolis antioxidants properties. Int. J. Electrochem. Sci. 2019, 14, 1231–1247. [Google Scholar] [CrossRef]
- Masek, A.; Latos, M.; Chrzescijanska, E.; Zaborski, M. Antioxidant properties of rose extract (Rosa villosa L.) measured using electrochemical and UV/Vis spectrophotometric methods. Int. J. Electrochem. Sci. 2017, 12, 10994–11005. [Google Scholar] [CrossRef]
- Berber, A.; Zengin, G.; Aktumsek, A.; Sanda, M.A.; Uysal, T. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey. Rev. Biol. Trop. 2014, 62, 337–346. [Google Scholar] [CrossRef]
- Fagali, N.; Catalá, A. Antioxidant activity of conjugated linoleic acid isomers. linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophys. Chem. 2008, 137, 56–62. [Google Scholar] [CrossRef]
- Amarowicz, R. Lycopene as a natural antioxidant. Eur. J. Lipid Sci. Technol. 2011, 113, 675–677. [Google Scholar] [CrossRef]
- Wei, F.; Tanokura, M. Chapter 17—Organic compounds in green coffee beans. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 149–162. [Google Scholar] [CrossRef]
- Bothiraj, K.V.; Vanitha, V. Green coffee bean seed and their role in antioxidant—A review. Int. J. Res. Pharm. Sci. 2020, 11, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Swieca, M.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B. Wheat bread enriched with green coffee—In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chem. 2017, 221, 1451–1457. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Ho Lee, D.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Bolio-López, G.I.; Ross-Alcudia, R.E.; Veleva, L.; Barrios, J.A.A.; Madrigal, G.C.; Hernández-Villegas, M.M.; De la Burelo, P.; Córdova, S.S. Extraction and characterization of cellulose from agroindustrial waste of pineapple (Ananas comosus L. Merrill) crowns. Chem. Sci. Rev. Lett. 2016, 5, 198–204. [Google Scholar]
- Heneczkowski, M.; Kopacz, M.; Nowak, D.; Kuźniar, A. Infrared spectrum analysis of some flavonoids. Acta Pol. Pharm. 2001, 6, 415–420. [Google Scholar]
- Doroshenko, I.; Pogorelov, V.; Sablinskas, V. Infrared absorption spectra of monohydric alcohols. Dataset Pap. Chem. 2013, 2013, 329406. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Chen, C.; Zhao, S.; Ge, F.; Liu, D.; Shi, D.; Zhang, T. Interaction of gallic acid with trypsin analyzed by spectroscopy. J. Food Drug Anal. 2015, 23, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Rojas, J.; Londono, C.; Ciro, Y. The health benefits of natural skin UVA photoprotective compounds found in botanical sources. Int. J. Pharm. Pharm. Sci. 2016, 8, 13–23. [Google Scholar]
- Joshi, D.D. UV–Vis. Spectroscopy: Herbal drugs and fingerprints. In Herbal Drugs and Fingerprints: Evidence Based Herbal Drugs; Springer: New Delhi, India, 2012; pp. 101–120. [Google Scholar]
- Linoa, F.M.A.; De Sá, L.Z.; Torres, I.M.S.; Rocha, M.L.; Dinis, T.C.P.; Ghedini, P.C.; Somerset, V.S.; Gil, E.S. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim. Acta 2014, 128, 25–31. [Google Scholar] [CrossRef]
Peak | Retention Time (min) | Area (%) | Plant Compound |
---|---|---|---|
1 | 13.25 | 1.68 | Caffeine |
2 | 14.71 | 0.13 | Palmitelaidic acid, TMS derivative |
3 | 15.03 | 35.16 | Palmitic Acid, TMS derivative |
4 | 16.60 | 0.19 | Oleic Acid, (Z)-, TMS derivative |
5 | 17.05 | 32.37 | Linoleic acid, TMS |
6 | 17.27 | 9.96 | Stearic acid, TMS derivative |
7 | 17.61 | 0.47 | 17-Octadecynoic acid, TMS derivative |
8 | 18.59 | 0.37 | Arachidic acid, TMS derivative |
9 | 19.78 | 0.19 | 2-Oleoylglycerol, 2TMS derivative |
10 | 20.43 | 0.45 | Methyl glycocholate, 3TMS derivative |
11 | 21.08 | 1.88 | 1-Monolinolein, 2TMS derivative |
12 | 21.23 | 0.52 | Glycerol monostearate, 2TMS derivative |
13 | 21.40 | 0.45 | Lycopene, 1,1′,2,2′-tetrahydro-1,1′-dimethoxy-, all-trans- |
14 | 21.55 | 0.26 | Ethyl iso-allocholate |
15 | 22.93 | 0.21 | β-Tocopherol, TMS derivative |
Peak | Retention Time (min) | Area (%) | Plant Compound |
---|---|---|---|
1 | 7.65 | 5.03 | Glycerol, 3TMS derivative |
2 | 8.06 | 0.19 | Glycerol 1,2-diacetate |
3 | 10.69 | 0.20 | Triethanolamine, 3TMS derivative |
4 | 12.47 | 0.47 | D-Fructose, 5TMS derivative |
5 | 12.99 | 1.44 | Quinic acid |
6 | 13.40 | 0.75 | α-D-Glucopyranosiduronic acid, 3-(5-ethylhexahydro-2,4,6-trioxo-5-pyrimidinyl)-1,1-dimethylpropyl 2,3,4-tris-O-(trimethylsilyl)-, methyl ester |
7 | 13.78 | 0.66 | D-Mannitol, 6TMS derivative |
8 | 14.51 | 0.29 | Myo-Inositol, 6TMS derivative |
9 | 14.66 | 0.24 | D-Pinitol, pentakis(trimethylsilyl) ether |
10 | 14.93 | 0.19 | Palmitic Acid, TMS derivative |
11 | 19.95 | 0.93 | D-(+)-Turanose, octakis(trimethylsilyl) ether |
12 | 20.61 | 29.81 | Sucrose, 8TMS derivative |
Method | Peak I | Peak II | Peak III | Peak IV | ACtotal | ||||
---|---|---|---|---|---|---|---|---|---|
Ep (V) | ip (µA) | Ep (V) | ip (µA) | Ep (V) | ip (µA) | Ep (V) | ip (µA) | ||
CV for v = 0.05 Vs−1 | 0.29 | 7.95 | 1.01 | 18.22 | 1.25 | 24.49 | 1.56 | 44.68 | |
DPV | 0.28 | 3.97 | 0.96 | 4.05 | 1.23 | 3.65 | 1.49 | 6.45 | |
AC for CV | 27.41 | 18.03 | 19.59 | 28.64 | 93.68 | ||||
AC for DPV | 14.17 | 4.21 | 2.96 | 4.32 | 25.69 |
Concentration of Green Coffee Extract (mg/mL) | EtOH | Water 10 min | Water 30 min |
---|---|---|---|
ABTS-TEAC (mmolT/100g) | |||
1.00 | 46.6 ± 0.64 | 50.8 ± 0.54 | 73.1 ± 0.71 |
2.00 | 110.1 ± 0.94 | 55.2 ± 0.35 | 81.2 ± 0.36 |
3.00 | 94.1 ± 0.23 | 65.8 ± 0.15 | 105.5 ± 0.17 |
4.00 | 89.4 ± 0.17 | 91.2 ± 0.23 | 95.3 ± 0.23 |
DPPH-TEAC (mmolT/100g) | |||
1.00 | 78.5 ± 0.51 | 98.5 ± 0.42 | 96.5 ± 0.48 |
2.00 | 85.0 ± 0.26 | 74.2 ± 0.26 | 81.5 ± 0.31 |
3.00 | 67.7 ± 0.14 | 56.7 ± 0.29 | 68.9 ± 0.23 |
4.00 | 57.2 ± 0.11 | 61.8 ± 0.19 | 72.1 ± 0.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masek, A.; Latos-Brozio, M.; Kałużna-Czaplińska, J.; Rosiak, A.; Chrzescijanska, E. Antioxidant Properties of Green Coffee Extract. Forests 2020, 11, 557. https://doi.org/10.3390/f11050557
Masek A, Latos-Brozio M, Kałużna-Czaplińska J, Rosiak A, Chrzescijanska E. Antioxidant Properties of Green Coffee Extract. Forests. 2020; 11(5):557. https://doi.org/10.3390/f11050557
Chicago/Turabian StyleMasek, Anna, Malgorzata Latos-Brozio, Joanna Kałużna-Czaplińska, Angelina Rosiak, and Ewa Chrzescijanska. 2020. "Antioxidant Properties of Green Coffee Extract" Forests 11, no. 5: 557. https://doi.org/10.3390/f11050557
APA StyleMasek, A., Latos-Brozio, M., Kałużna-Czaplińska, J., Rosiak, A., & Chrzescijanska, E. (2020). Antioxidant Properties of Green Coffee Extract. Forests, 11(5), 557. https://doi.org/10.3390/f11050557