Who Adopts Agroforestry in a Subsistence Economy?—Lessons from the Terai of Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Descriptions
2.2. Overview of Farming Systems in the Study Area
2.3. Selection of Farmers for Questionnaire Survey
2.4. Analytical Model
2.5. Variables Defined
- Yi = 0 if a household adopts conventional agriculture system (CAS) -reference category- (j = 0);
- Yi = 1 if a household adopts agroforest system (AFS)- non-reference category- (j = 1);
- Yi = 2 if a household adopts alley cropping system (ACS)- non-reference category- ((j = 2).
2.6. Method of Data Analysis
3. Results
3.1. Socio-Economic, Biophysical and Institutional Characteristics of Sample Households
3.2. Determinants of AFS and ACS Adoption
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kotiaho, J.S.; Halme, P. The IPBES Assessment Report on Land Degradation and Restoration; IPBES Secretariat, UN Campus: Bonn, Germany, 2018. [Google Scholar]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Nachtergaele, F.; Biancalani, R.; Petri, M. Land Degradation: SOLAW Background Thematic Report 3; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Conacher, A. Land degradation: A global perspective. N. Z. Geog. 2009, 65, 91–94. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Jaquet, S.; Schwilch, G.; Hartung-Hofmann, F.; Adhikari, A.; Sudmeier-Rieux, K.; Shrestha, G.; Kohler, T. Does outmigration lead to land degradation? Labor shortage and land management in a western Nepal watershed. Appl. Geogr. 2015, 62, 157–170. [Google Scholar] [CrossRef]
- Rasul, G.; Thapa, G.B. Shifting cultivation in the mountains of South and Southeast Asia: Regional patterns and factors influencing the change. Land Degrad. Dev. 2003, 14, 495–508. [Google Scholar] [CrossRef]
- Westarp, S.V.; Sandra Brown, H.S.; Shah, P.B. Agricultural intensification and the impacts on soil fertility in the Middle Mountains of Nepal. Can. J. Soil Sci. 2004, 84, 323–332. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Nair, P.K.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Dhakal, A.; Cockfield, G.; Maraseni, T.N. Evolution of agroforestry-based farming systems: A study of Dhanusha District, Nepal. Agrofor. Syst. 2012, 86, 17–33. [Google Scholar] [CrossRef]
- Harvey, C.A.; Gonzalez, J.; Somarriba, E. Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers. Conserv. 2006, 15, 555–585. [Google Scholar] [CrossRef]
- Kabir, M.E.; Webb, E.L. Can home gardens conserve biodiversity in Bangladesh? Biotropica 2008, 40, 95–103. [Google Scholar] [CrossRef]
- Moguel, P.; Toledo, V.M. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 1999, 13, 11–21. [Google Scholar] [CrossRef]
- Neupane, R.P.; Thapa, G.B. Impact of agroforestry intervention on soil fertility and farm income under the subsistence farming system of the middle hills, Nepal. Agric. Ecosyst. Environ. 2001, 84, 157–167. [Google Scholar] [CrossRef]
- Dhakal, A. Evolution, Adoption and Economic Evaluation of an Agroforestry-based Farming System with and without Carbon Values: The Case of Nepal. Ph.D. Thesis, University of Southern Queensland, Toowoomba, Australia, 2013. [Google Scholar]
- Schwab, N.; Schickhoff, U.; Fischer, E. Transition to agroforestry significantly improves soil quality: A case study in the central mid-hills of Nepal. Agric. Ecosyst. Environ. 2015, 205, 57–69. [Google Scholar] [CrossRef]
- Acharya, A.K.; Kafle, N. Land degradation issues in Nepal and its management through agroforestry. J. Agric. Environ. 2009, 10, 133–143. [Google Scholar] [CrossRef]
- Cockfield, G.J. Evaluating a Markets-based Incentive Scheme for Farm Forestry: A Case Study. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2005. [Google Scholar]
- Mercer, D.E. Adoption of agroforestry innovations in the tropics: A review. Agrofor. Syst. 2004, 61, 311–328. [Google Scholar] [CrossRef]
- Toth, G.G.; Nair, P.R.; Duffy, C.P.; Franzel, S.C. Constraints to the adoption of fodder tree technology in Malawi. Sustain. Sci. 2017, 12, 641–656. [Google Scholar] [CrossRef]
- Mfitumukiza, D.; Barasa, B.; Ingrid, A. Determinants of agroforestry adoption as an adaptation means to drought among smallholder farmers in Nakasongola District, Central Uganda. Afr. J. Agric. Res. 2017, 12, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Sanou, L.; Savadogo, P.; Ezebilo, E.E.; Thiombiano, A. Drivers of farmers’ decisions to adopt agroforestry: Evidence from the Sudanian savanna zone, Burkina Faso. Renew. Agric. Food Syst. 2019, 34, 116–133. [Google Scholar] [CrossRef]
- Beyene, A.D.; Mekonnen, A.; Randall, B.; Deribe, R. Household level determinants of agroforestry practices adoption in rural Ethiopia. For. Trees Livelihoods 2019, 28, 194–213. [Google Scholar] [CrossRef]
- Oli, B.N.; Treue, T.; Larsen, H.O. Socio-economic determinants of growing trees on farms in the middle hills of Nepal. Agrofor. Syst. 2015, 89, 765–777. [Google Scholar] [CrossRef]
- Catacutan, D.; Naz, F. Gender roles, decision-making and challenges to agroforestry adoption in Northwest Vietnam. Int. For. Rev. 2015, 17, 22–32. [Google Scholar] [CrossRef]
- Neupane, R.P.; Sharma, K.R.; Thapa, G.B. Adoption of agroforestry in the hills of Nepal: A logistic regression analysis. Agric. Syst. 2002, 72, 177–196. [Google Scholar] [CrossRef]
- Dhakal, A.; Cockfield, G.; Maraseni, T.N. Deriving an index of adoption rate and assessing factors affecting adoption of an agroforestry-based farming system in Dhanusha District, Nepal. Agrofor. Syst. 2015, 89, 645–661. [Google Scholar] [CrossRef]
- Central Bureau of Statistics. Environment Statistics of Nepal; Central Bureau of Statistics: Kathmandu, Nepal, 2012. [Google Scholar]
- Dhakal, A. Silviculture and Productivity of Five Economically Important Timber Species of Central Terai of Nepal; Nepal Agroforestry Foundation (NAF): Kathmandu, Nepal, 2008. [Google Scholar]
- Nepal Agroforestry Foundation (NAF). Terai Project Report; Nepal Agroforestry Foundation: Kathmandu, Nepal, 2018. [Google Scholar]
- Borremans, L.; Reubens, B.; Van Gils, B.; Baeyens, D.; Vandevelde, C.; Wauters, E. A sociopsychological analysis of agroforestry adoption in Flanders: Understanding the discrepancy between conceptual opportunities and actual implementation. Agroecol. Sustain. Food Syst. 2016, 40, 1008–1036. [Google Scholar] [CrossRef]
- Idumah, F.O.; Owombo, P.T. Determinants of yam production and resource use efficiency under agroforestry system in Edo State, Nigeria. Tan. J. Agric. Sci. 2019, 18, 35–42. [Google Scholar]
- Tadele, M.; Birhane, E.; Kidu, G.; G-Wahid, H.; Rannestad, M.M. Contribution of parkland agroforestry in meeting fuel wood demand in the dry lands of Tigray, Ethiopia. J. Sustain. For. 2020, 39, 1–13. [Google Scholar] [CrossRef]
- Sarker, M.A.R.; Alam, K.; Gow, J. Assessing the determinants of rice farmers’ adaptation strategies to climate change in Bangladesh. Inter. J. Clim. Chang. Strat. Mgmt. 2013, 5, 382–403. [Google Scholar] [CrossRef] [Green Version]
- Miheretu, B.A.; Yimer, A.A. Determinants of farmers’ adoption of land management practices in Gelana sub-watershed of Northern highlands of Ethiopia. Ecol. Process. 2017, 6, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Kropko, J. Choosing between Multinomial Logit and Multinomial Probit Models for Analysis of Unordered Choice Data. Master’s Thesis, University of North Carolina, Chapel Hill, NC, USA, 2008. [Google Scholar] [CrossRef]
- Lin, Y.; Deng, X.; Li, X.; Ma, E. Comparison of multinomial logistic regression and logistic regression: Which is more efficient in allocating land use? Front. Earth Sci. 2014, 8, 512–523. [Google Scholar] [CrossRef]
- Luus, F.P.; Salmon, B.P.; Van den Bergh, F.; Maharaj, B.T.J. Multiview deep learning for land-use classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2448–2452. [Google Scholar] [CrossRef] [Green Version]
- Paton, L.; Troffaes, M.C.; Boatman, N.; Hussein, M.; Hart, A. Multinomial logistic regression on Markov chains for crop rotation modelling. In Information Processing and Management of Uncertainty in Knowledge-Based Systems; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 5th Ed. ed; Pearson Education: New Delhi, India, 2003; pp. 67–185. [Google Scholar]
- Cheng, S.; Long, J.S. Testing for IIA in the multinomial logit model. Sociol. Methods Res. 2007, 35, 583–600. [Google Scholar] [CrossRef]
- Alavalapati, J.R.R.; Luckert, M.K.; Gill, D.S. Adoption of agroforestry practices: A case study from Andhra Pradesh, India. Agrofor. Syst. 1995, 32, 1–14. [Google Scholar] [CrossRef]
- Anley, Y.; Bogale, A.; Haile-Gabriel, A. Adoption decision and use intensity of soil and water conservation measures by smallholder subsistence farmers in Dedo district, Western Ethiopia. Land Degrad. Dev 2007, 18, 289–302. [Google Scholar] [CrossRef]
- Carlson, J.E.; Schnabel, B.; Beus, C.E.; Dillman, D.A. Changes in the soil conservation attitudes and behaviors of farmers in the Palouse and Camas prairies: 1976–1990. J. Soil Water Conserv. 1994, 49, 493–500. [Google Scholar]
- Thangata, P.H.; Alavalapati, J.R. Agroforestry adoption in southern Malawi: The case of mixed intercropping of Gliricidia sepium and maize. Agric. Syst. 2003, 78, 57–71. [Google Scholar] [CrossRef]
- Roberts, J.S.; Laughlin, J.E.; Wedell, D.H. Validity issues in the Likert and Thurstone approaches to attitude measurement. Educ. Psychol. Meas. 1999, 59, 211–233. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. The Economic Lives of Smallholder Farmers: An Analysis Based on Household Data from Nine Countries; FAO: Rome, Italy, 2015. [Google Scholar]
- Khanal, U. Why are farmers keeping cultivatable lands fallow even though there is food scarcity in Nepal? Food Sec. 2018, 10, 603–614. [Google Scholar] [CrossRef]
- Adesina, A.A.; Mbila, D.; Nkamleu, G.B.; Endamana, D. Econometric analysis of the determinants of adoption of alley farming by farmers in the forest zone of southwest Cameroon. Agric. Ecosyst. Environ. 2000, 80, 255–265. [Google Scholar] [CrossRef]
- Adesina, A.A.; Chianu, J. Determinants of farmers’ adoption and adaptation of alley farming technology in Nigeria. Agrofor. Syst. 2002, 55, 99–112. [Google Scholar] [CrossRef]
- Fabiyi, Y.L.; Idowu, E.O.; Oguntade, A.E. Land tenure and management constraints to the adoption of alley farming by women in Oyo State of Nigeria. Niger. J. Agric. Ext. 1991, 6, 40–46. [Google Scholar]
- Djalilov, B.M.; Khamzina, A.; Hornidge, A.K.; Lamers, J.P. Exploring constraints and incentives for the adoption of agroforestry practices on degraded cropland in Uzbekistan. J. Environ. Plan. Manag. 2016, 59, 142–162. [Google Scholar] [CrossRef]
- Nkomoki, W.; Bavorová, M.; Banout, J. Adoption of sustainable agricultural practices and food security threats: Effects of land tenure in Zambia. Land Use Policy 2018, 78, 532–538. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agr. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Ahmed, A.U.; Hernandez, R.; Naher, F. Adoption of Stress-Tolerant Rice Varieties in Bangladesh. In Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development; Gatzweiler, F.W., vun Brawn, J., Eds.; Springer: Cham, Switzerland; New York, NY, USA, 2016; pp. 241–255. [Google Scholar]
- Mwase, W.; Sefasi, A.; Njoloma, J.; Nyoka, B.I.; Manduwa, D.; Nyaika, J. Factors affecting adoption of agroforestry and evergreen agriculture in Southern Africa. Environ. Nat. Resour. Res. 2015, 5, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Coulibaly, J.Y.; Chiputwa, B.; Nakelse, T.; Kundhlande, G. Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric. Syst. 2017, 155, 52–69. [Google Scholar] [CrossRef]
- Kassie, G.W. Agroforestry and farm income diversification: Synergy or trade-off? The case of Ethiopia. Environ. Syst. Res. 2017, 6, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Mabuza, M.L.; Sithole, M.M.; Wale, E.; Ortmann, G.F.; Darroch, M.A.G. Factors influencing the use of alternative land cultivation technologies in Swaziland: Implications for smallholder farming on customary Swazi Nation Land. Land Use Policy 2013, 33, 71–80. [Google Scholar] [CrossRef]
- Sabastian, G.; Kanowski, P.; Race, D.; Williams, E.; Roshetko, J.M. Household and farm attributes affecting adoption of smallholder timber management practices by tree growers in Gunungkidul region, Indonesia. Agrofor. Syst. 2014, 88, 257–268. [Google Scholar] [CrossRef]
- Sood, K.K.; Mitchell, C.P. Identifying important biophysical and social determinants of on-farm tree growing in subsistence-based traditional agroforestry systems. Agrofor. Syst. 2009, 75, 175–187. [Google Scholar] [CrossRef]
- Pingale, B.; Bana, O.P.S.; Banga, A.; Chaturvedi, S.; Kaushal, R.; Tewari, S.; Neema, S. Accounting biomass and carbon dynamics in Populus deltoides plantation under varying density in terai of central Himalaya. J. Tree Sci. 2014, 33, 1–6. [Google Scholar]
- Pathak, D. Water availability and hydrogeological condition in the Siwalik foothill of east Nepal. Nepal J. Sci. Technol. 2016, 17, 31–38. [Google Scholar] [CrossRef]
- Rai, R.K.; Bhatta, L.D.; Acharya, U.; Bhatta, A.P. Assessing climate-resilient agriculture for smallholders. Environ. Dev. 2018, 27, 26–33. [Google Scholar] [CrossRef]
- Andres, C.; Comoé, H.; Beerli, A.; Schneider, M.; Rist, S.; Jacobi, J. Cocoa in Monoculture and Dynamic Agroforestry. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland; New York, NY, USA, 2016; Volume 19, pp. 121–153. [Google Scholar] [CrossRef]
- Cedamon, E.; Nuberg, I.; Pandit, B.H.; Shrestha, K.K. Adaptation factors and futures of agroforestry systems in Nepal. Agrofor. Syst. 2018, 92, 1437–1453. [Google Scholar] [CrossRef]
- Islam, M.A.; Sofi, P.A.; Bhat, G.M.; Wani, A.A.; Gatoo, A.A.; Singh, A.; Malik, A.R. Prediction of agroforestry adoption among farming communities of Kashmir valley, India: A logistic regression approach. J. Nat. Appl. Sci. 2016, 8, 2133–2140. [Google Scholar] [CrossRef]
- Simelton, E.S.; Catacutan, D.C.; Dao, T.C.; Dam, B.V.; Le, T.D. Factors constraining and enabling agroforestry adoption in Viet Nam: A multi-level policy analysis. Agrofor. Syst. 2017, 91, 51–67. [Google Scholar] [CrossRef]
- Basamba, T.A.; Mayanja, C.; Kiiza, B.; Nakileza, B.; Matsiko, F.; Nyende, P.; Ssekabira, K. Enhancing Adoption of Agroforestry in the Eastern Agro Ecological Zone of Uganda. Int. J. Ecol. Sci. Environ. Eng. 2016, 3, 20–31. [Google Scholar]
- Etshekape, P.G.; Atangana, A.R.; Khasa, D.P. Tree planting in urban and peri-urban of Kinshasa: Survey of factors facilitating agroforestry adoption. Urban For. Urban Green. 2018, 30, 12–23. [Google Scholar] [CrossRef]
- Haider, H.; Smale, M.; Theriault, V. Intensification and intrahousehold decisions: Fertilizer adoption in Burkina Faso. World Dev. 2018, 105, 310–320. [Google Scholar] [CrossRef]
- Rai, R.K.; Dhakal, A.; Khadayat, M.S.; Ranabhat, S. Is collaborative forest management in Nepal able to provide benefits to distantly located users? For. Policy Econ. 2017, 83, 156–161. [Google Scholar] [CrossRef]
- Pradhan, N.S.; Sijapati, S.; Bajracharya, S.R. Farmers’ responses to climate change impact on water availability: Insights from the Indrawati Basin in Nepal. Int. J. Water Resour. Dev. 2015, 31, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, S.; Pant, B.; Laudari, H.K.; Timalsina, N.; Rai, R.K. Restoring Landscapes through Trees Outside Forests: A Case from Nepal’s Terai Region. Int. For. Rev. 2020, 22, 33–48. [Google Scholar] [CrossRef]
Variables | Description | Type of Measure | Expected Sign |
---|---|---|---|
Education | Years of formal education of household head | Years | + |
Age | Age of the household head | Years | − |
Sex | Sex of the household head | 1 if male, 0 otherwise | + |
Household size | Number of family members between 15 to 60 years | Years | − |
Off-farm income | Farmer has any off-farm source of income | 1 if yes, 0 otherwise | + |
Landholding size | Total cultivated area | Katha 1 | + |
Livestock herd size | Total livestock standard units (LSU) 2 kept by a surveyed household | Numbers | + |
Extension service | Total number of training received and visits by extension workers in the last five years | Numbers | + |
Home to forest distance | Distance from home to nearest government forest | Kilometers | + |
Transport | Means of transport possessed by the surveyed household | 1 if a farmer has own means of transport, 0 otherwise | +, - |
Irrigation facility | Farm has any source of irrigation | 1 if yes, 0 otherwise | + |
Membership | Member of farmers’ group and organization | 1 if yes, 0 otherwise | + |
Origin | Farmer is native | 1 if yes, 0 otherwise | + |
Risk taking attitude | Farmer is risk-averse, risk-neutral and risk loving | 1 if risk loving, 2 if risk-neutral and 3 if risk-averse | + |
Awareness | Farmer is aware of environmental benefits of an agroforestry practice | 1 if yes, 0 otherwise | + |
Variables. | Mean Values of the Variables | ||
---|---|---|---|
CAS (n = 162) | ACS (n = 60) | AFS (n = 48) | |
Education (Years of schooling) | 5.0 (3.6) a | 6.3 (3.7) b | 9.6 (4.0) c |
Age of household head | 46.6 (13.2) a | 43.6 (9.9) | 39.4 (10.0) b |
Sex of household head | 0.55 (0.50) | 0.56 (0.50) | 0.64 (0.48) |
Household size | 4.7 (2.1) a | 4.4 (1.9) | 3.9 (1.3) b |
Off-farm income | 0.32 (0.50) | 0.49 (0.50) | 0.75 (0.43) |
Landholding size | 23.8 (21.1) a | 34.7 (25.4) b | 74.3 (36.7) c |
Livestock herd size (LSU) * | 2.9 (1.9) a | 3.7 (2.6) b | 6.7 (2.8) c |
Extension service | 0.80 (1.1) a | 3.2 (2.2) b | 5.5 (1.7) c |
Distance from home to nearest government forest | 4.2 (2.7) a | 9.0 (5.6) b | 9.3 (5.5) b |
Transport (tractor, bullock cart) | 0.6 (0.51) | 0.4 (0.51) | 0.3 (0.48) |
Irrigation | 0.35 (0.48) | 0.46 (0.50) | 0.63 (0.49) |
Membership | 0.25 (0.43) | 0.51 (0.50) | 0.73 (0.45) |
Origin | 0.41(0.49) | 0.40 (0.49) | 0.58 (0.50) |
Risk taking attitude | 2.4 (0.80) | 1.71 (0.77) | 1.52 (0.74) |
Awareness | 0.28 (0.45) | 0.51 (0.50) | 0.69 (0.47) |
AFS (n = 48) | ACS (n = 60) | |||||
---|---|---|---|---|---|---|
Independent Variables | Coefficient | RRR | p Value | Coefficient | RRR | p Value |
Years of schooling (education) | 0.159 | 1.172 | 0.247 | 0.114 | 1.121 | 0.194 |
Age of household head | −0.048 | 0.953 | 0.315 | −0.008 | 1.008 | 0.753 |
Sex of household head | 0.280 | 1.323 ** | 0.044 | 0.202 | 0.823 | 0.714 |
Household size | −0.618 | 0.539 ** | 0.041 | −0.078 | 0.925 | 0.580 |
Off-farm income | 1.083 | 2.954 ** | 0.023 | 0.148 | 1.159 | 0.262 |
Landholding size | 0.123 | 3.130 *** | 0.000 | 0.095 | 1.099 *** | 0.003 |
Livestock herd size | 0.555 | 1.742 *** | 0.003 | 0.178 | 1.195 | 0.179 |
Extension service | 1.064 | 2.910 *** | 0.000 | 0.529 | 1.697 *** | 0.003 |
Distance from home to government forest | 0.376 | 1.457 *** | 0.001 | 0.322 | 1.380 *** | 0.000 |
Transport | −0.682 | 0.506 *** | 0.005 | −0.172 | 0.842 * | 0.086 |
Irrigation | 0.549 | 1.732 ** | 0.042 | 0.302 | 0.352 | 0.571 |
Membership | 0.217 | 1.242 ** | 0.038 | 0.115 | 1.122 ** | 0.019 |
Origin | 1.215 | 3.371 | 0.188 | −0.336 | 0.714 | 0.551 |
Risk averse a | −2.134 | 0.118 ** | 0.041 | −1.208 | 0.299 | 0.123 |
Risk neutral a | −1.049 | 0.350 | 0.326 | −0.384 | 0.681 | 0.577 |
Awareness | 0.189 | 1.208 * | 0.058 | 0.821 | 2.273 | 0.122 |
Constant | −10.110 | 0.00004 *** | 0.004 | −5.213 | 0.0054 *** | 0.002 |
Diagnostics | ||||||
Base category | CAS (n = 162) | |||||
Number of observations | 270 | |||||
LR chi-square | 373.13 *** | |||||
Log likelihood | −93.45 | |||||
Pseudo R2 | 0.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, A.; Rai, R.K. Who Adopts Agroforestry in a Subsistence Economy?—Lessons from the Terai of Nepal. Forests 2020, 11, 565. https://doi.org/10.3390/f11050565
Dhakal A, Rai RK. Who Adopts Agroforestry in a Subsistence Economy?—Lessons from the Terai of Nepal. Forests. 2020; 11(5):565. https://doi.org/10.3390/f11050565
Chicago/Turabian StyleDhakal, Arun, and Rajesh Kumar Rai. 2020. "Who Adopts Agroforestry in a Subsistence Economy?—Lessons from the Terai of Nepal" Forests 11, no. 5: 565. https://doi.org/10.3390/f11050565
APA StyleDhakal, A., & Rai, R. K. (2020). Who Adopts Agroforestry in a Subsistence Economy?—Lessons from the Terai of Nepal. Forests, 11(5), 565. https://doi.org/10.3390/f11050565