Cost–Benefit Analysis of Measures to Reduce Windstorm Impact in Pure Norway Spruce (Picea abies L. Karst.) Stands in Latvia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gardiner, B.; Quine, C.P. Management of forests to reduce the risk of abiotic damage—A review with particular reference to the effects of strong winds. Forest Ecol. Manag. 2000, 135, 261–277. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Lindner, M.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 2013, 3, 792–796. [Google Scholar] [CrossRef]
- Kron, W.; Löw, P.; Kundzewicz, Z.W. Changes in risk of extreme weather events in Europe. Environ. Sci. Policy 2019, 100, 74–83. [Google Scholar] [CrossRef]
- EASAC. Extreme Weather Events in Europe. 2018. Available online: https://easac.eu/fileadmin/PDF_s/reports_statements/Extreme_Weather/EASAC_Statement_Extreme_Weather_Events_March_2018_FINAL.pdf (accessed on 7 March 2020).
- Stott, P.A.; Christidis, N.; Otto, F.E.L.; Sun, Y.; Vanderlinden, J.P.; van Oldenborgh, G.J.; Zwiers, F.W. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Zscheischler, J. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Niinemets, U.; Sheffield, J.; Lichstein, W.J. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 2018, 556, 99–102. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Malley, J., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Seidl, R.; Thom, D.; Kautz, M.; Martín-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Reyer, C. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, B.; Schuck, A.R.T.; Schelhaas, M.J.; Orazio, C.; Blennow, K.; Nicoll, B. Living with Storm Damage to Forests: What Science can Tell Us, 3rd ed.; European Forest Institute: Joensuu, Finland, 2013; p. 133. [Google Scholar]
- Motta, R.; Ascoli, D.; Corona, P.; Marchetti, M.; Vacchiano, G. Silviculture and wind damages, the storm “Vaia”. Forest@- Rivista di Selvic. ed Ecol. Forest 2018, 15, 94–98, (In Italian with English summary). [Google Scholar] [CrossRef] [Green Version]
- Xi, W.; Peet, R.K.; Decoster, J.K.; Urban, D.L. Tree damage risk factors associated with large, infrequent wind disturbances of Carolina forests. Int. J. For. Res. 2008, 81, 317–334. [Google Scholar] [CrossRef] [Green Version]
- Laapas, M.; Lehtonen, I.; Venäläinen, A.; Peltola, H.M. The 10-year return levels of maximum wind speeds under frozen and unfrozen soil forest conditions in Finland. Climate 2019, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Caudullo, G.; Tinner, W.; de Rigo, D. Picea abies in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union Luxembourg: Luxembourg, 2016; pp. 114–116. [Google Scholar]
- Donis, J.; Kitenberga, M.; Šņepsts, G.; Dubrovskis, E.; Jansons, Ā. Factors affecting windstorm damage at the stand level in hemiboreal forests in Latvia: Case study of 2005 winter storm. Silva Fenn. 2018, 52. [Google Scholar] [CrossRef] [Green Version]
- Šņepsts, G.; Donis, J.; Strēlnieks, K.; Krišāns, O.; Desaine, I.; Adamovičs, A. Post-storm regeneration of Norway spruce. In Proceedings of the 25th Annual International Scientific Conference “Research for Rural Development 2019”, Jelgava, Latvia, 17–19 May 2019; pp. 71–75. [Google Scholar] [CrossRef]
- Peltola, H.; Ikonen, V.P.; Gregow, H.; Strandman, H.; Kilpeläinen, A.; Venäläinen, A.; Kellomäki, S. Impacts of climate change on timber production and regional risks of win-induced damage to forests in Finland. For. Ecol. Manag. 2010, 260, 833–845. [Google Scholar] [CrossRef]
- Destructive Storms in European Forests: Past and Forthcoming Impacts. Available online: https://ec.europa.eu/environment/forests/pdf/STORMS%20Final_Report.pdf (accessed on 5 February 2020).
- Andersson, E.; Carina, E.; Keskitalo, H.; Bergstén, S. In the eye of the storm: Adaptation logics of forest owners in management and planning in Swedish areas. Scand. J. For. Res. 2018, 33, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Valinger, E.; Kempe, G.; Fridman, J. Forest management and forest state in southern Sweden before and after the impact of storm Gudrun in the winter of 2005. Scand. J. For. Res. 2014, 29, 466–472. [Google Scholar] [CrossRef]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Rural Support Service. Restoration of Forest Stands Destroyed by Forest Fires and Natural Disasters. Available online: http://www.lad.gov.lv/lv/atbalsta-veidi/projekti-un-investicijas/atbalsta-pasakumi/8-4-meza-ugunsgrekos-un-dabas-katastrofas-iznicinatu-mezaudzu-atjaunosana-231 (accessed on 5 February 2020). (In Latvian)
- Dubrovskis, E.; Jansone, B.; Kapostins, R.; Racenis, E.; Sisenis, L. Influence of wind-storm on forest composition: Case study in north- western Latvia. In Proceedings of the SGEM2018 Vienna GREEN Conference, Vienna, Austria, 3–6 December 2018; Volume 18, pp. 703–710. [Google Scholar] [CrossRef]
- Lodin, I. Choice of Tree Species in the Aftermath of Two Major Storms—A Qualitative Study of Private Forest Owners in Southern Sweden. Master’s Thesis, Swedish University of Agriculture, Uppsala, Sweden, 2016. [Google Scholar]
- Suvanto, S.; Henttonen, H.M.; Nöjd, P.; Mäkinen, H. Forest susceptibility to storm damage is affected by similar factors regardless of storm type: Comparison of thunder storms and autumn extra-tropical cyclones in Finland. For. Ecol. Manag. 2016, 381, 17–28. [Google Scholar] [CrossRef]
- Suvanto, S.; Peltoniemi, M.; Tuominen, S.; Strandstöm, M.; Lehtonen, A. High-resolution mapping of forest vulnerability to wind for disturbance-aware forestry. For. Ecol. Manag. 2019, 453, 117–159. [Google Scholar] [CrossRef]
- Zell, J.; Hanewinkel, M. How treatment, storm events and changed climate affect productivity of temperate forests in SW Germany. Reg. Environ. Chang. 2015, 15, 1531–1542. [Google Scholar] [CrossRef]
- Katrevičs, J.; Džeriņa, B.; Neimane, U.; Desaine, I.; Bigača, Z.; Jansons, Ā. Production and profitability of low density Norway spruce (Picea abies (L.) Karst.) plantation at 50 years of age: Case study from eastern Latvia. Agron. Res. 2018, 16, 113–121. [Google Scholar] [CrossRef]
- Zeltiņš, P.; Matisons, R.; Gailis, A.; Jansons, J.; Katrevičs, J.; Jansons, Ā. Genetic parameters of growth traits and stem quality of silver birch in a low-density clonal plantation. Forests 2018, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Brüchert, F.; Becker, G.; Speck, T. The mechanics of Norway sprcuce [Picea abies (L.) Karst.]: Mechanical properties of standing trees from different thinning regimes. For. Ecol. Manag. 2000, 135, 45–62. [Google Scholar] [CrossRef]
- Slodicak, M.; Novak, J. Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. For. Ecol. Manag. 2006, 224, 252–257. [Google Scholar] [CrossRef]
- Gardiner, B.; Blennow, K.; Carnus, J.-M.; Fleischer, M.; Ingemarson, F.; Landmann, G. Destructive Storms in European Forests: Past and Forthcoming Impacts; Final report to DG Environment (07.0307/2009/SI2.540092/ETU/B.1); EFI: Helsinki, Finland, 2010; p. 113. [Google Scholar]
- Krause, C.; Lemay, A.; Tremblay, S.; Ruel, J.C.; Plourde, P.Y. How does the root system inhibit windthrow in thinned black spruce sites in the boreal forests? Trees 2014, 28, 1723–1735. [Google Scholar] [CrossRef]
- Jansson, G.; Danusevičius, D.; Grotehusman, H.; Kowalczyk, J.; Krajmerova, D.; Skrøppa, T.; Wolf, H. Norway spruce. In Forest Tree Breeding in Europe. Managing Forest Ecosystems; Picea abies, L., Karst, H., Pâques, L., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 25, pp. 123–176. [Google Scholar] [CrossRef]
- Jansson, G.; Hansen, J.K.; Haapanen, M.; Kvaalen, H.; Steffenrem, A. The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scand. J. For. Res. 2017, 32, 273–286. [Google Scholar] [CrossRef]
- Brunette, M.; Costa, S.; Lecocq, F. Economics of species change subject to risk of climate change and increasing information: A (quasi-)option value analysis. Ann. For. Sci. 2014, 71, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Kärhä, K.; Anttonen, T.; Poikela, A.; Palander, T.; Laurén, A.; Peltola, H.; Nuutinen, Y. Evaluation of salvage logging productivity and costs in windthrown Norway Spruce- dominated forests. Forests 2018, 9, 280. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Kellomäki, S.; Gardiner, B.; Blennow, K. Life-style services and yield from south-Swedish forests adaptively managed against the risk of wind damage: A simulation study. Reg. Environ. Chang. 2014, 15, 1489–1500. [Google Scholar] [CrossRef]
- Ahti, T.; Hämet-ahti, L.; Jalas, J.; Annales, S.; Fennici, B. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 1968, 5, 169–211. [Google Scholar]
- Spalvins, A.; Slangens, J.; Lace, I.; Aleksans, O.; Krauklis, K. Regional hydrogeological model of Latvia for management of its groundwater resources. In Proceedings of the International Conference on Applied Information and Communication Technologies (AICT2012), Riga Technical University, Latvia, 24–26 April 2012; pp. 135–144. [Google Scholar]
- NFI. National Forest Monitoring. 2018. Available online: http://www.silava.lv/petijumi/nacionlais-mea-monitorings.aspx (accessed on 10 February 2020). (In Latvian).
- Ministry of Agriculture. Latvian Forest Sector in Facts and Figures 2019; Zaļās mājas: Riga, Latvia, 2019; p. 53.
- State Forest Service. Publiskais Pārskats, 2005 Annual Report. Available online: https://www.zm.gov.lv/public/files/CMS_Static_Page_Doc/00/00/00/20/99/VMD_publiskais_parsk_2005.pdf (accessed on 10 February 2020). (In Latvian)
- Soil Fields. Available online: https://geolatvija.lv/geo/p/317 (accessed on 10 February 2020). (In Latvian).
- Kennedy, F. The identification of soils for forest management. In Forestry Commission Field Guide; Forestry Commission: Edinburgh, Scotland, 2002; p. 56. [Google Scholar]
- Quine, C.P. Estimation of mean wind climate and probability of strong winds for wind risk assessment. Forestry 2000, 73, 247–258. [Google Scholar] [CrossRef]
- Donis, J.; Šņepsts, G. Novēloti koptu vienvecuma egļu audžu apsaimniekošanas alternatīvas un to ekonomisks izvērtējums. In Economic Evaluation of Alternatives to the Management of Late-Tended Even-Aged Spruce Stands; Jansons, J., Ed.; Vienvecuma egļu meži Latvijā [Even-Aged Spruce Forests in Latvia]: Salaspils, Latvia, 2019; pp. 71–98. (In Latvian) [Google Scholar]
- Krisans, O.; Matisons, R.; Rust, S.; Burnevica, N.; Bruna, L.; Elferts, D.; Kalvane, L.; Jansons, A. Presence of root rot reduces stability of Norway spruce (Picea abies): Results of static pulling tests in Latvia. Forests 2020, 11, 416. [Google Scholar] [CrossRef] [Green Version]
- Krisans, O.; Saleniece, R.; Rust, S.; Elferts, D.; Kapostins, R.; Jansons, A.; Matisons, R. Effect of bark-stripping on mechanical stability of Norway spruce. Forests 2020, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Krisans, O.; Samariks, V.; Jansons, A. Root-plate characteristics of Norway spruce in hemiboreal forests. (manuscript in preparation).
- Ozoliņš, R. Forest stand assortment structure analysis using mathematical modelling. For. Stud. 2002, 7, 33–42. [Google Scholar] [CrossRef]
- Donis, J. Improved site index scales for most common tree species in Latvia. In Četri Mežzinātnes Motīvi; Jansons, J., Ed.; Saule: Daugavpils, Latvia, 2014; pp. 11–35. (In Latvian) [Google Scholar]
- Central Statistical Bureau of Latvia. Forestry Report 2018. Available online: https://www.csb.gov.lv/lv/statistika/statistikas-temas/lauksaimnieciba/mezsaimnieciba/meklet-tema/386-mezsaimnieciba-2018-gada (accessed on 3 February 2020). (In Latvian)
- National Energy and Climate Plan 2021–2030. Available online: https://em.gov.lv/lv/nozares_politika/nacionalais_energetikas_un_klimata_plans/ (accessed on 23 March 2020).
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [Green Version]
- State Forest Service. Publiskais Pārskats; 2018 Annual Report. Available online: https://www.zm.gov.lv/public/files/CMS_Static_Page_Doc/00/00/01/54/24/VMD_Publiskais_parskats_2018_.pdf (accessed on 20 February 2020). (In Latvian)
- Fahlvik, N. Aspects of Precommercial Thinning in Heterogeneous Forest in Southern Sweden. Ph.D. Dissertation, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2005. [Google Scholar]
- Peltola, H.; Kellomäki, S.; Väisänen, H.; Ikonen, V.-P. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 1999, 29, 647–661. [Google Scholar] [CrossRef]
- Cameron, A.D. Importance of early selective thinning in the development of long-term stand stability and improved log quality: A review. Forestry 2002, 75, 25–35. [Google Scholar] [CrossRef]
- Forest Europe. UNECE and FAO. State of Europe’s Forests. In Status and Trends in Sustainable Forest Management in Europe, Proceedings of the Ministerial Conference on the Protection of Forests in Europe, 15 December 2015; Forest Europe, Liaison Unit Madrid: Madrid, Spain, 2015. [Google Scholar]
- Valuable Forests of the Future Grow in LSF Nurseries. Available online: https://www.lvm.lv/jaunumi/4377-lvm-kokaudzetavas-aug-vertigais-nakotnes-mezs (accessed on 23 March 2020). (In Latvian).
- Gardiner, B.A.; Quine, C.P. The Mechanical adaptation of trees to environmental influences. In Proceedings of the 3rd Plant Biomechanics Conference, Freiburg, Germany, 27 August–2 September 2000; pp. 71–82. [Google Scholar]
- Schütz, J.P.; Götz, M.; Schmid, W.; Mandallaz, D. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for Silviculture. Eur. J. For. Res. 2006, 125, 291–302. [Google Scholar] [CrossRef]
- Greiss, V.C.; Acevedo, R.; Härtl, F.; Staupendahl, K.; Knoke, T. Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For. Ecol. Manag. 2012, 276, 284–296. [Google Scholar] [CrossRef]
- Snepsts, G.; Kitenberga, M.; Elferts, D.; Donis, J.; Jansons, A. Stem damage modifies the impact of wind on Norway spruces. Forests 2020, 11, 463. [Google Scholar] [CrossRef] [Green Version]
Management Operation | Costs | ||
---|---|---|---|
Soil preparation and planting | 160 EUR ha−1 | ||
Plants | 150 EUR 1000 plants | ||
Planting | 85 EUR 1000 plants | ||
Tending | 110 EUR ha−1 | ||
Pre-commercial thinning | 124 EUR ha−1 | ||
Logging: | Regeneration cut, EUR m−3 | Thinning, EUR m−3 | Salvage-logging, EUR m−3 |
Assortment preparation (harvesting) | 5.70 | 9.39 | 9.85 |
Timber extraction (delivery) | 4.94 | 6.14 | 4.94–6.14 |
Timber transportation (forwarding) | 5.90 | 6.07 | 5.90–6.07 |
Assortment | Minimum Top Diameter, cm | Minimum Length, m | Price, EUR m−3 |
---|---|---|---|
Sawlogs I | >28 | 3.6 | 71 |
Sawlogs II | 18.1–28 | 3.6 | 68 |
Sawlogs III | 14.1–18 | 3.6 | 62 |
Pulpwood | 10.1–14 | 3 | 28 |
Firewood | 6–10 | 3 | 26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samariks, V.; Krisans, O.; Donis, J.; Silamikele, I.; Katrevics, J.; Jansons, A. Cost–Benefit Analysis of Measures to Reduce Windstorm Impact in Pure Norway Spruce (Picea abies L. Karst.) Stands in Latvia. Forests 2020, 11, 576. https://doi.org/10.3390/f11050576
Samariks V, Krisans O, Donis J, Silamikele I, Katrevics J, Jansons A. Cost–Benefit Analysis of Measures to Reduce Windstorm Impact in Pure Norway Spruce (Picea abies L. Karst.) Stands in Latvia. Forests. 2020; 11(5):576. https://doi.org/10.3390/f11050576
Chicago/Turabian StyleSamariks, Valters, Oskars Krisans, Janis Donis, Ilze Silamikele, Juris Katrevics, and Aris Jansons. 2020. "Cost–Benefit Analysis of Measures to Reduce Windstorm Impact in Pure Norway Spruce (Picea abies L. Karst.) Stands in Latvia" Forests 11, no. 5: 576. https://doi.org/10.3390/f11050576
APA StyleSamariks, V., Krisans, O., Donis, J., Silamikele, I., Katrevics, J., & Jansons, A. (2020). Cost–Benefit Analysis of Measures to Reduce Windstorm Impact in Pure Norway Spruce (Picea abies L. Karst.) Stands in Latvia. Forests, 11(5), 576. https://doi.org/10.3390/f11050576