Forest Disturbances in Polish Tatra Mountains for 1985–2016 in Relation to Topography, Stand Features, and Protection Zone
Abstract
:1. Introduction
- Topographic features, such as elevation, exposure, and slope.
- Stand features, such as vegetation community type, age, structure, and degree of naturalness.
- The management protection zone.
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. Landsat Data
2.2.2. Digital Elevation Model
2.2.3. Data from Conservation Plan of the Tatra National Park
- Forest vegetation communities (1:25,000 scale);
- Age structure of stands (1:75,000 scale);
- Age of stands (1:75,000 scale);
- Degree of naturalness (1:75,000 scale);
- Management protection zone (1:25,000 scale).
2.3. Disturbance Detection and Database Preparation
3. Results
4. Discussion
4.1. Frequency of Disturbances in Relation to Topography
4.2. Frequency of Disturbances in Relation to Stand Features
4.3. Frequency of Disturbances in Relation to the Management Protection Zone
4.4. Future Works
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- McDowell, N.G.; Coops, N.C.; Beck, P.S.A.; Chambers, J.Q.; Gangodagamage, C.; Hicke, J.A.; Huang, C.; Kennedy, R.; Krofcheck, D.J.; Litvak, M.; et al. Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci. 2015, 20, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Kautz, M.; Meddens, A.J.H.; Hall, R.J.; Arneth, A. Biotic disturbances in Northern Hemisphere forests—A synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob. Ecol. Biogeogr. 2017, 26, 533–552. [Google Scholar] [CrossRef]
- Bałazy, R.; Ciesielski, M.; Waraksa, P.; Zasada, M.; Zawiła-Niedźwiecki, T. Deforestation processes in the polish mountains in the context of terrain topography. Forests 2019, 10, 1027. [Google Scholar] [CrossRef] [Green Version]
- Kenderes, K.; Aszalós, R.; Ruff, J.; Barton, Z.; Standovár, T. Effects of topography and tree stand characteristics on susceptibility of forests to natural disturbances (ice and wind) in the Börzsöny Mountains (Hungary). Commun. Ecol. 2007, 8, 209–220. [Google Scholar] [CrossRef]
- Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manag. 2017, 391, 349–361. [Google Scholar] [CrossRef]
- Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. For. Ecol. Manag. 2017, 388, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Kulakowski, D.; Veblen, T.T. Influences of fire history and topography on the pattern of a severe wind blowdown in a Colorado subalpine forest. J. Ecol. 2002, 90, 806–819. [Google Scholar] [CrossRef]
- Bragg, D.C.; Shelton, M.G.; Zeide, B. Impacts and management implications of ice storms on forests in the southern United States. For. Ecol. Manag. 2003, 186, 99–123. [Google Scholar] [CrossRef]
- Canham, C.D.; Papaik, M.J.; Latty, E.F. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can. J. For. Res. 2001, 31, 1–10. [Google Scholar] [CrossRef]
- Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I.; Fraver, S.; Frelich, L.E.; Gutiérrez, Á.G.; Hart, S.J.; et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, A.G.; Hamburg, S.P.; Fahey, T.J.; Siccama, T.G.; Hane, E.N.; Battles, J.; Cogbill, C.; Randall, J.; Wilson, G. Effects of an intense ice storm on the structure of a northern hardwood forest. Can. J. For. Res. 2002, 32, 1763–1775. [Google Scholar] [CrossRef] [Green Version]
- Marcinkowska-Ochtyra, A.; Jarocińska, A.; Bzdȩga, K.; Tokarska-Guzik, B. Classification of expansive grassland species in different growth stages based on hyperspectral and LiDAR data. Remote Sens. 2018, 10, 2019. [Google Scholar] [CrossRef] [Green Version]
- Marcinkowska-Ochtyra, A.; Zagajewski, B.; Ochtyra, A.; Jarocińska, A.; Wojtuń, B.; Rogass, C.; Mielke, C.; Lavender, S. Subalpine and alpine vegetation classification based on hyperspectral APEX and simulated EnMAP images. Int. J. Remote Sens. 2017, 38, 1839–1864. [Google Scholar] [CrossRef] [Green Version]
- Meigs, G.W.; Kennedy, R.E.; Cohen, W.B. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 2011, 115, 3707–3718. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Sproull, G.J.; Bukowski, M.; Mcnutt, N.; Zwijacz-Kozica, T.; Szwagrzyk, J. Landscape-Level Spruce Mortality Patterns and Topographic Forecasters of Bark Beetle Outbreaks in Managed and Unmanaged Forests of the Tatra Mountains. Polish J. Ecol. 2017, 65, 24–37. [Google Scholar] [CrossRef]
- Osińska-Skotak, K.; Bakuła, K.; Jełowicki, Ł.; Podkowa, A. Using canopy height model obtained with dense image matching of archival photogrammetric datasets in area analysis of secondary Su. Remote Sens. 2019, 11, 2182. [Google Scholar] [CrossRef] [Green Version]
- Osińska-Skotak, K.; Radecka, A.; Piórkowski, H.; Michalska-Hejduk, D.; Kopeć, D.; Tokarska-Guzik, B.; Ostrowski, W.; Kania, A.; Niedzielko, J. Mapping Succession in Non-Forest Habitats by Means of Remote Sensing: Is the Data Acquisition Time Critical for Species Discrimination? Remote Sens. 2019, 11, 2629. [Google Scholar] [CrossRef] [Green Version]
- Marcinkowska-Ochtyra, A.; Gryguc, K.; Ochtyra, A.; Kopeć, D.; Jarocińska, A.; Sławik, Ł. Multitemporal hyperspectral data fusion with topographic indices’improving classification of natura 2000 grassland habitats. Remote Sens. 2019, 11, 2264. [Google Scholar] [CrossRef] [Green Version]
- Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Simard, M.; Zhang, K.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castañeda-Moya, E.; Twilley, R.R.; Rodriguez, E. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [Google Scholar] [CrossRef]
- Marcinkowska-Ochtyra, A.; Zagajewski, B.; Raczko, E.; Ochtyra, A.; Jarocińska, A. Classification of high-mountain vegetation communities within a diverse Giant Mountains ecosystem using airborne APEX hyperspectral imagery. Remote Sens. 2018, 10, 570. [Google Scholar] [CrossRef] [Green Version]
- Kupková, L.; Červená, L.; Suchá, R.; Jakešová, L.; Zagajewski, B.; Březina, S.; Albrechtová, J. Classification of tundra vegetation in the Krkonoše Mts. National park using APEX, AISA dual and sentinel-2A data. Eur. J. Remote Sens. 2017, 50, 29–46. [Google Scholar] [CrossRef]
- Kycko, M.; Zagajewski, B.; Lavender, S.; Dabija, A. In situ hyperspectral remote sensing for monitoring of alpine trampled and recultivated species. Remote Sens. 2019, 11, 1296. [Google Scholar] [CrossRef] [Green Version]
- Kycko, M.; Zagajewski, B.; Lavender, S.; Romanowska, E.; Zwijacz-Kozica, M. The impact of tourist traffic on the condition and cell structures of alpine swards. Remote Sens. 2018, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Zagajewski, B. Classification of High-Mountain Plant Communities Using Artificial Neural Nets and Hyperspectral Data. In 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2010—Workshop Program; IEEE: Reykjavik, Iceland, 2010. [Google Scholar]
- Bielecka, E. Photointerpretation survey of changes in the range of the Tatra subalpine forests. Misc. Geogr. 1986, 2, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Bielecka, E.; Fedorowicz-Jackowski, W.; Witkowska, E. Sequential monitoring of Tatra subalpine forests on the basis of cartographic and remotely-sensed data. Conf. Pap. Polish Acad. Sci. Inst. Geogr. Spat. Organ. 1995. [Google Scholar]
- Fedorowicz-Jackowski, W. Ten Years After—1992–2002. Change Detection of Tatra Subalpine Forests. Presented at the Environmount Conference on GIS and RS in Mountain Environmment Research Papers, Zakopane, Poland, 19–23 September 2002. [Google Scholar]
- Weintrit, B.; Pluto-Kossakowska, J. Multi-Temporal Analysis of Forestation Changes in Tatra National Park Using SPOT Images. In Proceedings of the EARSeL 34th Symposium Proceedings, Warsaw, Poland, 16–20 June 2014. [Google Scholar]
- Ochtyra, A.; Zagajewski, B.; Kozłowska, A.; Jarocińska, A. Assessment of the condition of forests in the Tatra National Park using decision tree mothod and multispectral Landsat TM satellite images. Sylwan 2016, 160, 256–264. [Google Scholar]
- Jakuš, R.; Grodzki, W.; Jezik, M.; Jachym, M. Definition of spatial patterns of bark beetle Ips typographus (L.) Outbreak spreading in tatra mountains (Central Europe), Using GIS. Ecol. Surv. Manag. For. Insects 2003, 1–5, 25–32. [Google Scholar]
- Havašová, M.; Bucha, T.; Ferenčík, J.; Jakuš, R. Applicability of a vegetation indices-based method to map bark beetle outbreaks in the High Tatra Mountains. Ann. For. Res. 2015, 58, 295–310. [Google Scholar] [CrossRef]
- Oeser, J.; Pflugmacher, D.; Senf, C.; Heurich, M.; Hostert, P. Using intra-annual Landsat time series for attributing forest disturbance agents in Central Europe. Forests 2017, 8, 251. [Google Scholar] [CrossRef]
- Grodzki, W.; Guzik, M. Wiatro-i Śniegołomy Oraz Gradacje Kornika Drukarza w Tatrzańskim Parku Narodowym na Przestrzeni Ostatnich 100 lat. Próba Charakterystyki Przestrzennej. In Długookresowe Zmiany w Przyrodzie i Użytkowaniu TPN; Wydawnictwa Tatrzańskiego Parku Narodowego: Zakopane, Poland, 2009; pp. 33–46. [Google Scholar]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery. Aerospace 2011, 2011, 565. [Google Scholar]
- ENVI User’s Guide. 2002.
- Hardisky, M.A.; Klemas, V.; Smart, R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Ochtyra, A. Assessment of Remote Sensing Usefulness for Vegetation Disturbance Monitoring of Tatra Mountains. Ph.D. Thesis, University of Warsaw, Warsaw, Poland, 9 September 2019. [Google Scholar]
- Hais, M.; Jonášová, M.; Langhammer, J.; Kučera, T. Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sens. Environ. 2009, 113, 835–845. [Google Scholar] [CrossRef]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A. Boreal Shield forest disturbance and recovery trends using Landsat time series. Remote Sens. Environ. 2015, 70, 317–327. [Google Scholar] [CrossRef]
- Kozłowska, A. Analiza Trwałości Charakterystyki Fitosocjologicznej Borów Świerkowych Tatr w Ciągu 80 lat. In Geobotaniczne Rozpoznanie Tendencji Rozwojowych Zbiorowisk Leśnych w Wybranych Regionach Polski, Monografie, 8th ed.; Matuszkiewicz, J.M., Ed.; PAN IgiPZ: Warsaw, Poland; pp. 410–433.
- Grodzki, W.; Turcáni, M.; Jakuš, R.; Hlásny, T.; Rasi, R.; McManus, M.L. Bark beetles in the Tatra Mountains. International research 1998–2005—An overview. Folia For. Pol. Ser. A For. 2010, 52, 114–130. [Google Scholar]
- Grodzki, W.; Gąsienica-Fronek, W. Występowanie kornika drukarza Ips typographus (L.) (Coleoptera, Curculionidae, Scolytinae) po wiatrołomie z 2013 roku w Dolinie Kościeliskiej w Tatrzańskim Parku Narodowym. Leśn. Pr. Badaw. 2017, 78, 113–119. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochtyra, A. Forest Disturbances in Polish Tatra Mountains for 1985–2016 in Relation to Topography, Stand Features, and Protection Zone. Forests 2020, 11, 579. https://doi.org/10.3390/f11050579
Ochtyra A. Forest Disturbances in Polish Tatra Mountains for 1985–2016 in Relation to Topography, Stand Features, and Protection Zone. Forests. 2020; 11(5):579. https://doi.org/10.3390/f11050579
Chicago/Turabian StyleOchtyra, Adrian. 2020. "Forest Disturbances in Polish Tatra Mountains for 1985–2016 in Relation to Topography, Stand Features, and Protection Zone" Forests 11, no. 5: 579. https://doi.org/10.3390/f11050579
APA StyleOchtyra, A. (2020). Forest Disturbances in Polish Tatra Mountains for 1985–2016 in Relation to Topography, Stand Features, and Protection Zone. Forests, 11(5), 579. https://doi.org/10.3390/f11050579