Natural Weathering of Bio-Based Façade Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Façade Materials
2.2. Site Description
2.3. Evaluation Method
3. Results
3.1. Weather Conditions
3.2. Appearance and Colour Change of Specimens after 2 Years of Weathering
3.3. Material Surface Checks
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hill, C. Wood Modification: Chemical, Thermal and Other Processes; John Wiley and Sons, Ltd: Chichester, UK, 2006; pp. 1–18. [Google Scholar]
- Sandak, A.; Sandak, J.; Petrillo, M.; Grossi, P. Strengthening the confidence in bio-based building materials – BIO4ever project approach. Presented at Final COST FP1303 Meeting”Building with Bio-Based Materials: Best Practice and Performance Specification”, Zagreb, Croatia, 6–7 September 2017. [Google Scholar]
- Petrillo, M.; Sandak, J.; Sandak, A.; Grossi, P.; Kutnar, A. Life cycle assessment of bio-based façades during and after service life: maintenance planning and re-use. Presented at 9th European Conference on Wood Modification, Arnhem, The Netherlands, 17–18 September 2018. [Google Scholar]
- Sandak, A.; Sandak, J.; Brzezicki, M.; Kutnar, A. Bio-Based Building Skin; Springer Open: Singapore, 2019; Available online: https://doi.org/10.1007/978-981-13-3747-5 (accessed on 25 May 2019).
- Sandak, A.; Sandak, J.; Grossi, P.; Petrillo, M. Simulation and modelling tool for the evaluation of the façade performance—BIO4ever project approach. FACADE 2018. Presented at Final Conference COST Action TU1403 “Adaptive Facades Network”, Lucerne, Switzerland, 26–27 November 2018. [Google Scholar]
- Sandak, J.; Sandak, A.; Grossi, P.; Petrillo, M. Simulation and visualization of aesthetic performance of bio-based building skin. Presented at IRG49 Scientific Conference on Wood Protection, Johannesburg, South Africa, 29 April–3 May 2018. IRG/WP 18-2063. [Google Scholar]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2012; pp. 152–199. [Google Scholar]
- Reinprecht, L. Natural Durability of Wood. Wood Deterioration, Protection and Maintenance; John Wiley & Sons, Ltd: Chichester, UK, 2016; pp. 14–16. [Google Scholar]
- Evans, P.D. The influence of season and angle of exposure on the weathering of wood. Holz als Roh-und Werkstoff: Eur. J. Wood. Wood. Prod. 1996, 54, 200. [Google Scholar] [CrossRef]
- EN 350-2. Durability of Wood and Wood-Based Products; European Committee for Standardization: Brussels, Belgium, 1994. [Google Scholar]
- Tomak, E.D.; Ustaomer, D.; Ermeydan, M.A.; Yildiz, S. An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Measurement 2018, 127, 187–197. [Google Scholar] [CrossRef]
- Coulson, J. Wood in Construction; John Wiley & Sons Ltd: Chichester, UK, 2014; pp. 57–78. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. iForest 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Bulian, F.; Graystone, J.A. Wood Coatings: Theory and Practice, 1st ed.; Elsevier Radarweg: Amsterdam, The Netherlands, 2009; pp. 2–13. [Google Scholar]
- Accoya. Available online: https://www.accoya.com/wp-content/uploads/2015/09/WIG_EN_lowres.pdf (accessed on 8 April 2020).
- A New Breed of MDF an Extremely Durable and Stable Wood Panel. Available online: www.tricoya.com. https://tricoya.com/wp-content/uploads/2017/11/Tricoya_Main_Brochure_s16_FW_reduce_size-NORTH-AMERICA.pdf (accessed on 8 April 2020).
- Visnapuu, K. Natural Weathering of Bio-Based Facade Materials. Master’s Thesis, Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, Estonia, June 2019. [Google Scholar]
- EN ISO 2810. Paints and Varnshes—Natural Weathering of Coatings—Exposure and Assessment; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- EN ISO/CIE 11664-4. Colorimtery—Part 4: CIE 1976 L*a*b* Colour Space; European Committee for Standardization: Brussels, Belgium, 2011. [Google Scholar]
- EN ISO 4628-4. Paints and Varnishes – Evaluation of Degradation of Coatings – Designation of Quantity and Size of Defects, and of Intensity of Uniform Changes in Appearance – Part 4: Assessment of Degree of Cracking; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Brischke, C.; Humar, M.; Meyer, L.; Bardage, S.; Bulcke, J.V. Perfomance of Bio-Based Building Materials; COST Action FP 1303 – Cooperative Performance Test Instructions for participants: Brussels, Belgium, 2014. [Google Scholar]
- Oberhofnerová, E.; Pánek, M.; & García-Cimarras, A. The effect of natural weathering on untreated wood surface. Maderas-Cienc. Tecnol. 2017, 19, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Turkoglu, T.; Baysal, E.; Toker, H. The Effects of Natural Weathering on Color Stability of Impregnated and Varnished Wood Material. Adv. Mater. Sci. Eng. 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Temiz, A.; Yildiz, U.C.; Aydin, I.; Eikenes, M.; Alfrdsen, G.; Colakoglu, G. Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test. Appl. Surf. Sci. 2005, 250, 35–42. [Google Scholar] [CrossRef]
- Broda, M.; Bart, M.; Frankowski, M. Durability of wood treated with AATMOS and caffeine – towards the long-term carbon storage. Maderas-Cienc. Tecnol. 2018, 20, 455–468. [Google Scholar]
- Nanoprotect. Nanoprotect Wood Product System. Available online: http://files.nanoprotect.de/System_Holzprodukte_englisch.pdf (accessed on 25 May 2019).
- Grüll, G.; Tscherne, F.; Spitaler, I.; Forshuber, B. Comparison of wood coating durability in natural weathering and artificial weathering using fluorescent UV-lamps and water. Eur. J. Wood. Wood. Prod. 2014, 72, 367. [Google Scholar] [CrossRef]
- Ozgenc, O.; Hiziroglu, S.; Yildiz, U.C. Weathering Properties of Wood Species Treated With Different Coating Applications. Bioresources 2012, 7. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, S.Z.; Cao, J.; Jjang, J.; Wang, W. Improving anti-weathering performance of thermally modified wood by TiO2 sol or/and paraffin emulsion. Constr Build Mater. 2018, 169, 372–378. [Google Scholar] [CrossRef]
Wood Specimens | Scientific Name | ∆E (U/M) After 2 Years |
---|---|---|
Norway Spruce | Picea abies | 35.7 ± 1.7 |
Pine (Heartwood, dried 50–70 °C) | Pinus radiata | 33.6 ± 3.7 |
Pine | Pinus radiata | 31.3 ± 4.6 |
Larch with Laser Graver | Larix sp. | 31.0 ± 2.9 |
Southern Yellow Pine | Pinus echinata | 30.7 ± 3.4 |
Natural Pine | Pinus sylvestris | 30.4 ± 2.8 |
Silver Fir | Abies alba | 30.0 ± 1.4 |
Softwood | - | 29.0 ± 1.5 |
Plantation Teak (Class P_B) | Tectona grandis | 28.6 ± 2.3 |
Plantation Teak (Class A) | Tectona grandis | 26.9 ± 2.0 |
Plantation Teak (Class B) | Tectona grandis | 24.2 ± 0.7 |
Plantation Teak (Class C) | Tectona grandis | 21.8 ± 3.7 |
Oak | Quercus petraea | 20.8 ± 4.1 |
Beech | Fagus sylvatica | 19.4 ± 2.9 |
Bamboo Cladding | Bambuseae | 18.9 ± 4.7 |
Natural Beech | Fagus sp. | 18.5 ± 2.7 |
Bamboo Decking | Bambuseae | 15.3 ± 0.8 |
Poplar | Populus tremula | 14.6 ± 1.6 |
Ceris Oak | Quercus cerris | 13.8 ± 2.2 |
Chemically Modified Specimens | ∆E (U/M) after 2 Years | Composites | ∆E (U/M) after 2 Years |
---|---|---|---|
Acetylated Radiata Pine | 16.5 ± 1.3 | Particleboard and Bamboo | 23.2 ± 1.4 |
Acetylated Alder | 16.4 ± 0.8 | Fiberboard | 18.5 ± 5.3 |
Acetylated Beech | 14.3 ± 1.0 | Wood Plastic Composites | 7.4 ± 1.2 |
Kebony (Furfurylated) | 12.4 ± 1.1 | Bio-Ceramics | 4.5 ± 1.0 |
Scots Pine Kebony (Furfurylated) | 6.8 ± 3.4 | Tricoya. Opti finish | 4.5 ± 0.3 |
Tricoya for cladding. Pigmented White | 4.1 ± 1.0 | ||
Tricoya White | 4.0 ± 1.5 |
Surface Coated Specimens | ∆E (U/M) after 2 Years | Impregnated Specimens | ∆E (U/M) after 2 Years |
---|---|---|---|
Pine. nanocoated | 27.4 ± 1.2 | Spruce. AATMOS soaked | 39.0 ± 1.3 |
Natural Oak. Waxed | 22.9 ± 0.6 | Spruce. TA Impregnated. + Fluorosilane | 38.8 ± 4.0 |
Larch Lightly Burned | 18.4 ± 4.2 | Poplar. TA Impregnated. + Fluorosilane | 37.5 ± 3.1 |
Pine. Aqua Coating | 17.9 ± 2.4 | Poplar Soaked AATMOS | 37.1 ± 0.8 |
Natural Oak Coated | 17.4 ± 3.7 | Spruce. TA Fluorosilane soaked | 34.2 ± 1.6 |
White Treatment Solas | 14.0 ± 0.2 | Spruce. Impregnated. AATMOS | 33.9 ± 1.6 |
Softwood. Coated | 12.1 ± 2.6 | Pine. Soaked AATMOS | 33.5 ± 1.9 |
Pine. Grey Coating | 9.3 ± 1.4 | Pine. Impregnated + Soaking in Fluorosilane | 32.6 ± 1.7 |
Pine. White Coating | 9.3 ± 2.6 | Poplar. Impregnated AATMOS | 32.2 ± 3.4 |
Natural Spruce. Oiled | 9.3 ± 0.5 | Pine. Impregnated AATMOS | 31.6 ± 4.6 |
Hardwood. for Windows (coated) | 9.1 ± 1.2 | Spruce. Fluorosilane | 30 ± 1.5 |
Larch Carbonised | 8.8 ± 4.0 | Beech. Silicone | 29.8 ± 3.9 |
Softwood. Water Base | 8.5 ± 1.7 | Poplar. Impregnated + Fluorosilane | 29.6 ± 2.5 |
Softwood. Solvent Base | 7.9 ± 0.3 | Poplar. Fluorosilane | 28.6 ± 1.7 |
Spruce. Coated | 5.5 ± 0.7 | Spruce. Impregnated + Fluorosilane | 28.6 ± 2.7 |
Softwood. for Windows | 1.6 ± 0.3 | Poplar. Impregnated. + Soaking in Fluorosilane | 28.5 ± 1.4 |
Pine. DMDHEU | 27.8 ± 1.6 | ||
Fixapret | 25.0 ± 3.2 | ||
Pine. TiO2 | 24.2 ± 0.2 | ||
Silver Fir | 23.4 ± 4.2 | ||
Silver Fir. treated | 21.5 ± 0.9 | ||
Beech. impregnated | 20.7 ± 3.1 | ||
Silver Fir | 20.5 ± 1.6 | ||
Madurit | 20.3 ± 3.1 | ||
Beech. PBS | 19.6 ± 1.7 | ||
Knittex | 18.3 ± 0.2 | ||
Beech. PLA | 11.3 ± 0.9 | ||
CEA impregnated Softwood | 10.1 ± 1.7 |
Thermally Modified Specimens | ∆E (U/M) after 2 Years | Hybrid Modified Specimens | ∆E (U/M) after 2 Years |
---|---|---|---|
Frake. TM | 25.4 ± 2.2 | Pine. Nano TiO2 + Linseed Oil | 40.8 ± 2.2 |
Radiata Pine. TM | 24.2 ± 1.9 | Spruce. TM + Oil | 25.2 ± 1.9 |
Pine. TM | 23.8 ± 3.1 | Poplar. Madurit + TM | 22.9 ± 1.8 |
Spruce. TM | 23.1 ± 1.2 | Accoya (Poseidon) | 20.8 ± 3.0 |
Spruce. TM | 22.0 ± 1.4 | TM Oak + Coated | 19.7 ± 5.6 |
Spruce. TM | 21.9 ± 2.6 | Accoya (Hydro-Oil) | 17.9 ± 1.4 |
Poplar. TM | 20.0 ± 1.1 | Softwood. TM + Wax | 14.8 ± 1.6 |
Ayous. TM | 19.3 ± 1.8 | Pine. TM + Coating | 14.3 ± 4.0 |
Frake. TM | 19.2 ± 1.7 | Spruce. TM + Coating | 14.2 ± 2.3 |
Pine Thermo D 212 °C | 18.7 ± 2.1 | Oak. TM + Wax | 13.4 ± 0.5 |
Spruce Thermo D 212 °C | 18.6 ± 4.9 | Radiata Pine. Silicate | 13.2 ± 2.5 |
Sycamore. TM | 17.4 ± 1.4 | Radiate Pine. TM + Coating | 12.1 ± 0.8 |
Pine. TM | 17.0 ± 0.4 | Pine. Treated + Triazole | 11.1 ± 1.6 |
Poplar. TM | 16.7 ± 2.3 | Spruce TM + FeSo4 | 10.4 ± 1.8 |
Thermally Treated Obeche | 15.4 ± 2.3 | Ayous TM + Coating | 10.3 ± 0.8 |
Pine. OHT | 14.8 ± 2.2 | Accoya (Dark) | 10.2 ± 0.7 |
Ash Thermally Treated | 13.5 ± 2.6 | Accoya (Matt) | 9.2 ± 3.8 |
Thermally Modified Oak | 12.6 ± 0.2 | Radiata Pine. Water | 8.6 ± 0.5 |
Softwood. TM | 12.0 ± 1.3 | Frake. TM + Coating | 7.8 ± 0.8 |
TM Spruce. Over treated | 7.1 ± 1.8 | Pine. Triazole + Treated | 7.0 ± 4.0 |
TM Spruce. Coated | 4.8 ± 1.0 | ||
Accoya (Aqua) | 4.0 ± 0.9 | ||
Softwood. Biofilm | 3.3 ± 0.4 | ||
Accoya (White) | 3.0 ± 0.2 | ||
Accoya (Pigmented White) | 1.3 ± 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alao, P.; Visnapuu, K.; Kallakas, H.; Poltimäe, T.; Kers, J. Natural Weathering of Bio-Based Façade Materials. Forests 2020, 11, 642. https://doi.org/10.3390/f11060642
Alao P, Visnapuu K, Kallakas H, Poltimäe T, Kers J. Natural Weathering of Bio-Based Façade Materials. Forests. 2020; 11(6):642. https://doi.org/10.3390/f11060642
Chicago/Turabian StyleAlao, Percy, Kevin Visnapuu, Heikko Kallakas, Triinu Poltimäe, and Jaan Kers. 2020. "Natural Weathering of Bio-Based Façade Materials" Forests 11, no. 6: 642. https://doi.org/10.3390/f11060642
APA StyleAlao, P., Visnapuu, K., Kallakas, H., Poltimäe, T., & Kers, J. (2020). Natural Weathering of Bio-Based Façade Materials. Forests, 11(6), 642. https://doi.org/10.3390/f11060642