Medicinal and Aromatic Lamiaceae Plants in Greece: Linking Diversity and Distribution Patterns with Ecosystem Services
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Flora Statistics and Distribution
- Family level: 26.8% (111 out of 414 taxa) when considering the taxa and 34% (88 of the 262 species) when considering the species;
- Genus level: Origanum is characterized by the highest endemism rate (70%) with 7 endemic species out of 10, followed by Satureja (60%), Nepeta and Teucrium (58%) (Figure 2a). Nepeta presents the highest rate with 10 endemic taxa out of 18 (56%), mostly due to the numerous endemic Nepeta argolica subspecies, followed by Origanum (54%) and Scutellaria (46%) (Figure 2b).
- Areas rich in Lamiaceae (orange to red cells) are located in northern and southern Pindos (NPi, SPi), Stereas Ellas (StE) and Peloponnisos (Pe), North Central Greece (NC) and Kriti (Kr) (Figure 3);
- Hotspot regions of Lamiaceae endemics are located on the Kriti (Kr) and Karpathos (Kp) islands and in Peloponnisos (Pe), especially in the southeast part of the region; Mt Athos (NE) can also be considered as a local hotspot (Figure 4).
3.2. Main Components and Properties
3.2.1. Main Components
3.2.2. Properties
Gradient Maps
- Aromatic properties: mountainous areas of SW Kriti (KK) are considered as the main hotspot for endemic taxa with aromatic properties, followed by the mountains of southern Peloponnisos (Pe). Secondary hotspots can be considered the areas of the Pindos mountain range (NPi and SPi) and Mt Olimbos (NC) (Figure 5a);
- Medical properties: mountainous areas of Greece are pinpointed as hotspots for endemic plants with medical properties. Kriti (KK) is the main hotspot (especially the eastern part of the island), followed by the mountains of Peloponnisos (Pe), Sterea Ellas (StE), southern Pindos (SPi) and Mt Olimbos (NC). Mt Athos (NE) is considered as a local hotspot (Figure 5b);
- Antimicrobial properties: all the mountains of Peloponnisos (Pe) are hotspots for the Greek endemic taxa with antimicrobial properties. Kriti (KK) follows, with one or more Greek endemics with antimicrobial properties occurring almost throughout the island. Mountains of Sterea Ellas (StE) are also highlighted as important, alongside the local hotspots of Mt Olimbos (NC) and Mt Athos (NE) (Figure 5c);
- Traditional medicine: Mt Olimbos (NC), Mt Parnon (Pe) and Mt Lefka Ori (KK) are the prevailing hotspots; other mountain ranges throughout Greece follow. It should be mentioned that the lack of well documented traditional uses of Greek endemic Lamiaceae in the literature is probably giving a weak signal with regard to the traditional uses of the Greek endemic Lamiaceae and thus biases the result of their spatial representation (Figure 5d);
- Environmental interest: Mt Taigetos (Pe), Mt Lefka Ori (KK), Mt Vourinos (NC) and the island of Kefallinia (IoI) are the main hotspots. A weak signal is also present for this category, due to the lack of extensive literature sources (Figure 5e).
3.2.3. Ecosystems and Ecosystem Services
Habitat Categories and Ecosystem Types
- The majority of the endemic Lamiaceae (41%, i.e., 45 taxa out of 111) occurs on cliffs, rocks, walls, boulder surfaces and ravines, a habitat category corresponding to the sparsely vegetated land MAES ecosystem type (level 2); 31 of these taxa (28% of the total) are exclusively found in this habitat category;
- A total of 31 taxa (28%) occur in xeric Mediterranean phrygana and grasslands (Mediterranean dwarf shrub formations, annual-rich pastures and lowland screes), a habitat category corresponding to the heathland and shrub MAES ecosystem type (level 2); 15 of these taxa (14% of the total) are exclusively found in this habitat category;
- A total of 30 taxa (28%) occur in high mountain vegetation (i.e., mountain- and oro-Mediterranean grasslands, screes and rocks, scrub above the tree line), a habitat category corresponding to the grasslands and sparsely vegetated land MAES ecosystem types (level 2); 20 of these taxa (18% of the total) are exclusively found in this habitat category;
- A total of 21 taxa (19%) occur in temperate and sub-Mediterranean grasslands, i.e., lowland to montane dry and mesic meadows and pastures, rock outcrops and stony ground, grassy non-ruderal verges and forest edges; these habitats correspond to the grasslands and sparsely vegetated land MAES ecosystem types (level 2); 12 of these taxa (11% of the total) are exclusively found in this habitat category;
- A total of 13 taxa (12%) are found exclusively in woodlands and scrub, i.e., broadleaved and coniferous forests, riparian and mountain forests and scrubs, hedges and shady woodland margins; these habitats correspond to the woodland and forest MAES ecosystem types (level 2); two of these taxa (2% of the total) are exclusively found in this habitat category;
- Finally, two taxa (2%) are found in agricultural and ruderal habitats (fields, gardens and plantations, roadsides and trampled sites, frequently disturbed and pioneer habitats), habitats corresponding to the cropland and urban MAES ecosystem types (level 2); one of these taxa (1% of the total) is exclusively found in this habitat category.
Ecosystem Services
- Aromatic uses correspond to (a) two CICES codes of provisioning services, (b) three IPEBS categories, (c) four MA categories and (d) three TEEB categories;
- Medical properties correspond to (a) one CICES code of provisioning services, (b) two IPEBS categories, (c) three MA categories and (d) two TEEB categories;
- Traditional medicine corresponds to (a) one CICES code of provisioning services and to three CICES codes of cultural services, (b) three IPEBS categories, (c) seven MA categories and (d) five TEEB categories;
- Antimicrobial applications correspond to (a) one CICES code of provisioning services, (b) one IPBES category, (c) three MA categories and (d) two TEEB categories;
- Environmental interest corresponds to (a) three CICES codes for regulating and maintenance services and to four CICES codes of cultural services, (b) seven IPBES categories, (c) fourMA categories and (d) one TEEB category.
- The island of Kriti is the main hotspot and especially its mountainous regions and mountain summits;
- The mountain summits of the southern Peloponnisos Peninsula (especially Mt Taigetos and Mt Parnon), Evvoia Island (Mt Dirfis), Mt Olimbos and Mt Athos (Chalkidiki peninsula) are assessed as local hotspots. Secondary local hotspots have been assessed on the mountains of northern Peloponnisos (Mt Chelmos, Mt Killini), Sterea Ellas (Mt Parnis, Mt Parnassos, Mt Giona) and of northern and southern Pindos (Mt Timfi, Mt Peristeri, Mt Tzoumerka);
- The extent of the Natura 2000 network in Greece covers all identified ecosystem services supply, or potential supply hotspots, as well as areas of lower importance based on the endemic Lamiaceae records.
4. Discussion
4.1. Properties and Components
4.2. Limitations of the Study
4.3. Ecosystem Services and Management Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lietava, J. Medicinal plants in a Middle Paleolithic grave Shanidar IV? J. Ethnopharmacol. 1992, 35, 263–266. [Google Scholar] [CrossRef]
- Nunn, J.F. Ancient Egyptian Medicine; University of Oklahoma Press: Norman, OK, USA, 1996. [Google Scholar]
- Kelly, K. The History of Medicine; Infobase Publishing: New York, NY, USA, 2009. [Google Scholar]
- Solomou, A.D.; Martinos, K.; Skoufogianni, E.; Danalatos, N.G. Medicinal and Aromatic Plants Diversity in Greece and Their Future Prospects: A Review. Agric. Sci. 2016, 4, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Petrakou, K.; Iatrou, G.; Lamari, F.N. Ethnopharmacological survey of medicinal plants traded in herbal markets in the Peloponnisos, Greece. J. Herb. Med. 2020, 19, 100305. [Google Scholar] [CrossRef]
- Bruneton, J. Farmacognosia, Fitoquímica, Plantas Medicinales, 2nd ed.; Editorial Acribia: Zaragoza, Spain, 2001. [Google Scholar]
- Iqbal, M. International Trade in Non-Wood Forest Products: An Overview; FAO: Rome, Italy, 1993. [Google Scholar]
- Walter, S. Non Wood Forest Products in Africa: A Regional and National Overview; FAO: Rome, Italy, 2001. [Google Scholar]
- WHO. Traditional Medicine Strategy 2014–2023; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Schippmann, U.; Leaman, D.; Cunningham, A.B. A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. In Medicinal and Aromatic Plants; Bogers, R., Craker, L., Lange, D., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 75–95. ISBN 978-1-4020-5448-8. [Google Scholar]
- Leaman, D.J. The International standard for sustainable wild collection of medicinal and aromatic plants (ISSC-MAP): Elements of ISSC-MAP resource assessment guidance relevant to cites NDF. In Proceedings of the International Expert Workshop on CITES Non-Detriment Findings Perennial Plant Working Group (Ornamentals, Medicinal and Aromatic Plants), Cancun, Mexico, 15 August 2008. [Google Scholar]
- Barata, A.M.; Rocha, F.A.; Lopes, V.M.; Maia, J.; Dias, S.; Costa, M.; Salgueiro, L.; Morgado, J.; Bettencourt, E.; Delgado, F.; et al. Networking on conservation and use of Medicinal, Aromatic and Culinary Plants Genetic Resources in Portugal. Acta Hortic. 2011, 925, 21–35. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines on the Conservation of Medicinal Plants; WHO: Geneva, Switzerland, 1993. [Google Scholar]
- Lambert, J.; Srivastava, J.; Vietmeyer, N. Medicinal Plants: Rescuing a Global Heritage; World Bank Tech. Pap. No 355; The World Bank: Washington, DC, USA, 1997; Available online: http://documents.worldbank.org/curated/en/538541468242090002/pdf/multi-page.pdf (accessed on 12 May 2020).
- BAH. Pflanzliche Arzneimittel Heute: Wissenschaftliche Erkenntnisse und Arzneirechtliche Rahmenbedingungen; Bestandsaufnahme und Perspektiven, 4th ed.; Bundesfachverband der Arzneimittelhersteller (BAH): Bonn, Germany, 2004. [Google Scholar]
- IUCN. Assessing the Impacts of Commercial Captive Breeding and Artificial Propagation on Wild Species Conservation; IUCN: Jacksonville, FL, USA, 2002. [Google Scholar]
- Ellenberg, A. Assuming responsibility for a protected plant: WELEDA’s endeavour to secure the firm’s supply of Arnica montana. In Proceedings of the Medicinal Plant Trade in Europe: Conservation and Supply: Proceedings of the First International Symposium on the Conservation of Medicinal Plants in Trade in Europe, Royal Botanic Gardens, Kew, UK, 22–23 June 1998; Traffic Europe, Ed.; Traffic Europe: Brussels, Belgium, 1998; pp. 127–130. [Google Scholar]
- Myklestad, Å.; Sætersdal, M. The importance of traditional meadow management techniques for conservation of vascular plant species richness in Norway. Biol. Conserv. 2004, 118, 133–139. [Google Scholar] [CrossRef]
- Bodeker, G.; Bhat, K.K.; Jeffrey, B.; Vantomme, P. Medicinal Plants for Forest Conservation and Health Care: Non-Wood Forest Products 11; FAO: Rome, Italy, 1997. [Google Scholar]
- Schippmann, U.; Leaman, D.J.; Cunningham, C.B. Impact of cultivation and gathering of medicinal plants in biodiversity: Global trends and issues. In Biodiversity and the Ecosystem Approach in Agriculture, Forestry, and Fisheries; FAO, Ed.; FAO: Rome, Italy, 2002; pp. 142–167. [Google Scholar]
- Schippmann, U.; Leaman, D.J.; Cunningham, A.B.; Walter, S. Impact of cultivation and collection on the conservation of medicinal plants: Global trends and issues. In Proceedings of the Conservation, Cultivation and Sustainable Use of MAPs: A Proceedings of WOCMAP III: The IIIrd World Congress on Medicinal Aromatic Plants, Chiang Mai, Thailand, 3–7 February 2003; Jatisatienr, A., Paratasilpin, T., Elliott, S., Anusarnsunthorn, V., Wedge, D., Craker, L.E., Gardner, Z., Eds.; ISHS Acta Horticulturae: Leuven, Belgium, 2005; pp. 31–34. [Google Scholar]
- Barata, A.M.; Rocha, F.; Lopes, V.; Carvalho, A.M. Conservation and sustainable uses of medicinal and aromatic plants genetic resources on the worldwide for human welfare. Ind. Crops Prod. 2016, 88, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Inatani, R.; Nakatani, N.; Fuwa, H. Antioxidative Effect of the Constituents of Rosemary (Rosmarinus officinalis L.) and Their Derivatives. Agric. Biol. Chem. 1983, 47, 521–528. [Google Scholar] [CrossRef]
- Franz, C. Actual Problems on the Quality of Medicinal and Aromatic Plants. Acta Hortic. 1986, 21–34. [Google Scholar] [CrossRef]
- Piccaglia, R.; Marotti, M.; Giovanelli, E.; Deans, S.G.; Eaglesham, E. Antibacterial and antioxidant properties of Mediterranean aromatic plants. Ind. Crops Prod. 1993, 2, 47–50. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; Arge, R.; De Groot, R.; Farberk, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.; Berry, P.; Egoh, B.; Puydarrieus, P.; Fiorina, C.; Santos, F.; et al. Mapping and Assessment of Ecosystem and Their Services. An Analytical Framework for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; Publications Office of the European Union: Luxemburg, 2013; ISBN 9789279293696. [Google Scholar]
- Vlami, V.; Kokkoris, I.P.; Zogaris, S.; Cartalis, C.; Kehayias, G.; Dimopoulos, P. Cultural landscapes and attributes of “culturalness” in protected areas: An exploratory assessment in Greece. Sci. Total Environ. 2017, 595, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Millenium Ecosystem Assessment. Ecosystems & Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Maes, J.; Teller, A.; Erhard, M.; Grizzetti, B.; Barredo, J.I.; Paracchini, M.L.; Condé, S.; Somma, F.; Orgiazzi, A.; Jones, A.; et al. Mapping and Assessment of Ecosystems and Their Services: An Analytical Framework for Ecosystem Condition; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Peters, C.M. Sustainable Harvest of Non-Timber Plant Resources in Tropical Moist Forests: An Ecological Primer; World Wildlife Fund: Washington, DC, USA, 1994. [Google Scholar]
- Cunningham, A.B. Applied Ethnobotany: People, Wild Plant Use and Conservation; Earthscan: London, UK, 2001. [Google Scholar]
- Allen, D.; Bilz, M.; Leaman, D.J.; Miller, R.M.; Timoshyna, A.; Window, J. European Red List of Medicinal Plants; Publications Office of the European Union: Luxemburg, 2014. [Google Scholar]
- Bogers, R.J.; Craker, L.E.; Lange, D. Medicinal and Aromatic Plants: Agricultural, Commercial, Ecological, Legal, Pharmacological and Social Aspects; Bogers, R.J., Craker, L.E., Lange, D., Eds.; Springer: Wageningen, The Netherlands, 2006. [Google Scholar]
- Lange, D. Trade in medicinal and aromatic plants: A financial instrument for nature conservation in Eastern and Southeast Europe. In Financial Instruments for Nature Conservation in Central and Eastern Europe; Heinze, B., Bäurle, G., Stolpe, G., Eds.; BfN—German Federal Agency for Nature Conservation: Bonn, Germany, 2001; pp. 157–171. [Google Scholar]
- Mateescu, I.; Paun, L.; Popescu, S.; Roata, G.; Sidoroff, M. Medicinal and aromatic plants—A statistical study on the role of Phytotherapy in human health. Bull. UASVM Anim. Sci. Biotechnol. 2014, 71, 14–19. [Google Scholar]
- Mulas, M. Traditional uses of Labiatae in the Mediterranean area. In Proceedings of the International Symposium on the Labiatae: Advances in Production, Biotechnology and Utilisation 723, Sanremo, Italy, 22–25 February 2006; pp. 25–32. [Google Scholar]
- Hellenic Ministry of Environment and Energy. LIFE IP 4Natura—Integrated Actions for the Conservation and Management of Natura 2000 Sites, Species, Habitats and Ecosystems in Greece. LIFE16 IPE/GR/000002. 1 December 2017. Available online: https://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=6520 (accessed on 12 May 2020).
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular plants of Greece: An annotated checklist. Englera 2013, 31, 370. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular plants of Greece: An annotated checklist. Supplement. Willdenowia 2016, 46, 301–347. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, P.; Raus, T.; Strid, A. Flora of Greece Web: Vascular Plants of Greece an Annotated Checklist. Available online: http://portal.cybertaxonomy.org/flora-greece/intro (accessed on 12 May 2020).
- Arne, S.; Tan, K. Flora Hellenica; Koeltz: Königstein, Germany, 1997. [Google Scholar]
- Haines-Young, R.; Potschin, M. CICES Towards a Common Classification of Ecosystem Services. Available online: https://cices.eu/ (accessed on 12 April 2020).
- IPEBS. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H., Eds.; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; Progress Press: Birkirkara, Malta, 2010. [Google Scholar]
- Panovska, T.K.; Kulevanova, S.; Stefova, M. In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharm. 2005, 55, 207–214. [Google Scholar]
- Čanadanović-Brunet, J.M.; Djilas, S.M.; Ćetković, G.S.; Tumbas, V.T.; Mandić, A.I.; Čanadanović, V.M. Antioxidant activities of different Teucrium montanum L. Extracts. Int. J. Food Sci. Technol. 2006, 41, 667–673. [Google Scholar] [CrossRef]
- Vukovic, N.; Milosevic, T.; Sukdolak, S.; Solujic, S. Antimicrobial activities of essential oil and methanol extract of Teucrium montanum. Evid. Based Complement. Alternat. Med. 2007, 4 (Suppl. 1), 17–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, Y.D.; Stark, M.J.; Roach, S.L.; Sen, S.E.; Crowell, P.L. Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 1997, 32, 151. [Google Scholar] [CrossRef] [PubMed]
- Carnesecchi, S.; Schneider, Y.; Ceraline, J.; Duranton, B.; Gosse, F.; Seiler, N.; Raul, F. Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. J. Pharmacol. Exp. Ther. 2001, 298, 197–200. [Google Scholar] [PubMed]
- Duncan, R.E.; Lau, D.; El-Sohemy, A.; Archer, M.C. Geraniol and β-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochem. Pharmacol. 2004, 68, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Junnila, A.; Butler, J.; Kravchenko, V.D.; Revay, E.E.; Weiss, R.W.; Schlein, Y. Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J. Vector Ecol. 2009, 34, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Do Vale, T.G.; Furtado, E.C.; Santos, J.G., Jr.; Viana, G.S.B. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (mill.) N.E. Brown. Phytomedicine 2002, 9, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Božovic, M.; Pirolli, A.; Ragno, R. Mentha suaveolens Ehrh. (Lamiaceae) essential oil and its main constituent piperitenone oxide: Biological activities and chemistry. Molecules 2015, 20, 8605–8633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahlou, S.; Carneiro-Leão, R.F.L.; Leal-Cardoso, J.H.; Toscano, C.F. Cardiovascular effects of the essential oil of Mentha x villosa and its main constituent, piperitenone oxide, in normotensive anaesthetised rats: Role of the autonomic nervous system. Planta Med. 2001, 67, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.K.; Prajapati, V.; Ahmad, A.; Aggarwal, K.K.; Khanuja, S.P.S. Piperitenone Oxide as Toxic, Repellent, and Reproduction Retardant toward Malarial Vector Anopheles stephensi (Diptera: Anophelinae). J. Med. Entomol. 2004, 41, 691–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- Mohammedi, Z. Carvacrol: An update of biological activities and mechanism of action. Open Access J. Chem. 2017, 1, 53–62. [Google Scholar]
- Jayanthy, A.; Kumar, P.U.; Remashree, A.B. Seasonal and Geographical Variations in Cellular Characters and Chemical Contents in Desmodium gangeticum (L.) DC.—An Ayurvedic Medicinal Plant. Int. J. Herb. Med. 2013, 1, 37. [Google Scholar]
- Boulila, A.; Sanaa, A.; Ben Salem, I.; Rokbeni, N.; M’rabet, Y.; Hosni, K.; Fernandez, X. Antioxidant properties and phenolic variation in wild populations of Marrubium vulgare L. (Lamiaceae). Ind. Crops Prod. 2015, 76, 616–622. [Google Scholar] [CrossRef]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Guimarães, A.C.; Fronza, M.; Endringer, D.C.; Scherer, R. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Ind. Crops Prod. 2017, 95, 543–548. [Google Scholar] [CrossRef]
- Cicek, M.; Demirci, B.; Yilmaz, G.; Ketenoglu, O.; Baser, K.H.C. Composition of the essential oils of subspecies of scutellaria albida L. from Turkey. J. Essent. Oil Res. 2010, 22, 55–58. [Google Scholar] [CrossRef]
- Glamoèlija, J.; Sokoviæ, M.; Vukojeviæ, J.; Milenkoviæ, I.; Van Griensven, L.J.L.D. Chemical composition and antifungal activities of essential oils of Satureja thymbra L. and Salvia pomifera ssp. calycina (Sm.) Hayek. J. Essent. Oil Res. 2006, 18, 115–117. [Google Scholar] [CrossRef]
- Presti, M.L.; Crupi, M.L.; Costa, R.; Dugo, G.; Mondello, L.; Ragusa, S.; Santi, L. Seasonal variations of teucrium flavum l. essential oil. J. Essent. Oil Res. 2010, 22, 211–216. [Google Scholar] [CrossRef]
- Piozzi, F.; Bruno, M. Diterpenoids from roots and aerial parts of the genus Stachys. Rec. Nat. Prod. 2011, 5, 1–11. [Google Scholar]
- Pacifico, S.; Galasso, S.; Piccolella, S.; Kretschmer, N.; Pan, S.P.; Marciano, S.; Bauer, R.; Monaco, P. Seasonal variation in phenolic composition and antioxidant and anti-inflammatory activities of Calamintha nepeta (L.) Savi. Food Res. Int. 2015, 69, 121–132. [Google Scholar] [CrossRef]
- Heinrich, M. Ethnopharmacology: Quo vadis? Challenges for the future. Rev. Bras. Farmacogn. 2014, 24, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Hanlidou, E.; Karousou, R.; Kleftoyanni, V.; Kokkini, S. The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. J. Ethnopharmacol. 2004, 91, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Karousou, R.; Deirmentzoglou, S. The herbal market of Cyprus: Traditional links and cultural exchanges. J. Ethnopharmacol. 2011, 133, 191–203. [Google Scholar] [CrossRef] [PubMed]
Main Components | Number of Taxa | Genus (Genera) Represented |
---|---|---|
(E)-caryophyllene | 4 | Satureja, Stachys |
(E)-nerolidol | 1 | Stachys |
1,8-cineole | 5 | Nepeta |
Alpha-cadinol | 1 | Stachys |
Alpha-copaene | 1 | Stachys |
Apha-pinene | 5 | Phlomis, Sideritis |
Bêta-caryophyllene | 2 | Sideritis, Teucrium |
Bêta-copaene | 1 | Sideritis |
Bêta-elemene | 2 | Stachys |
Carvacrol | 12 | Origanum, Satureja, Sideritis, Stachys, Teucrium, Thymbra, Thymus |
Caryophyllene oxide | 4 | Nepeta, Stachys |
Delta-cadinene | 2 | Stachys |
Gamma-terpinene | 1 | Satureja |
Geraniol | 1 | Thymus |
Germacrene D | 4 | Phlomis, Teucrium, Thymus |
Isoabienol | 3 | Sideritis, Stachys |
Limonene | 1 | Stachys |
Linalool | 2 | Scutellaria, Thymus |
Nepetalactone derivatives | 2 | Nepeta |
p-cymene | 5 | Origanum, Thymus |
Piperitenone oxide | 1 | Calamintha |
Piperitone oxide | 2 | Calamintha |
Spathulenol | 1 | Satureja |
Terpinen-4-ol | 1 | Origanum |
Thymol | 6 | Origanum, Satureja, Thymus |
Viridiflorol | 1 | Stachys |
Only flavonoid, iroid, phenolic or neoclerodane contents available | 8 | Marrubium, Scutellaria, Stachys, Teucrium |
Only one or two compounds known | 4 | Origanum, Scutellaria, Teucrium, Thymus |
Unknown | 54 | Acinos, Ballota, Clinopodium, Lamium, Micromeria, Prunella, Salvia, Scutellaria, … |
Properties | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Components | Risk of Toxicity | Genotoxicity | Antiviral | Antifungal | Antibacterial | Anti-Parasite | Cat Attractant | Insect Attractant | Insect Repellent or Insecticide | Antioxidant | Anti-Tumor | Anti-Ulcer | Anti-Inflammatory | Antinociceptive | Cardiovascular Benefits | Brain Benefits | Skin Penetrant | Immune-Modulator | Other Medical Properties | Flavouring or Ffragrance | Fuel, Materials, Solvents | Herbicidal or Plant Protection |
(E)-caryophyllene | x | x | No | ? | ? | |||||||||||||||||
(E)-nerolidol | ? | x | x | x | x | x | x | x | x | x | x | x | ? | |||||||||
1,8-cineole | No | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
Alpha-cadinol | ? | ? | x | ? | ? | |||||||||||||||||
Alpha-copaene | No | ? | x | x | x | |||||||||||||||||
Alpha-pinene | No | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
Beta-caryophyllene | No | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
Beta-copaene | ||||||||||||||||||||||
Beta-elemene | x | ? | x | x | x | x | ||||||||||||||||
Carvacrol | ? | No | X | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||
Caryophyllene oxide | x | No | x | x | x | x | x | x | x | x | x | x | ||||||||||
Delta cadinene | ? | x | ? | x | ? | |||||||||||||||||
Gamma-terpinene | x | x | x | x | x | |||||||||||||||||
Geraniol | ? | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||
Germacrene D | ? | x | x | |||||||||||||||||||
Isoabienol | ? | x | ||||||||||||||||||||
Limonene | ? | ? | x | x | ? | x | x | x | x | ? | x | x | x | |||||||||
Linalool | x | x | x | x | x | x | x | x | x | |||||||||||||
Nepetalactone derivatives | x | x | x | x | x | x | ||||||||||||||||
p-cymene | x | x | x | ? | x | x | ||||||||||||||||
Piperitenone oxide | x | X | x | x | x | x | x | x | x | x | x | x | x | |||||||||
Piperitone oxide | ? | ? | ||||||||||||||||||||
Spathulenol | x | x | x | x | x | x | x | |||||||||||||||
Terpinen-4-ol | x | x | x | x | x | x | x | |||||||||||||||
Thymol | No | x | x | x | x | x | ? | x | x | x | ||||||||||||
Viridiflorol | x | x | x | x | x | x | ||||||||||||||||
Total of x | 1 | 1 | 2 | 13 | 18 | 6 | 1 | 7 | 18 | 16 | 13 | 4 | 16 | 12 | 7 | 8 | 3 | 2 | 10 | 10 | 7 | 4 |
Total of ? | 3 | 3 | 4 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | ||||||||||
Total of No | 7 | 1 | ||||||||||||||||||||
Total (x, ?, No) | 4 | 9 | 2 | 16 | 22 | 8 | 1 | 7 | 20 | 17 | 16 | 4 | 18 | 13 | 7 | 8 | 3 | 3 | 11 | 10 | 7 | 6 |
Habitat Category [41,43] | MAES Ecosystem Type (Level 2) [28] | Number of Greek Endemic Lamiaceae Taxa |
---|---|---|
C: Cliffs, rocks, walls, ravines, boulders | Sparsely vegetated land | 45 (31) |
G: Temperate and sub-Mediterranean grasslands (lowland to montane dry and mesic meadows and pastures, rock outcrops and stony ground, grassy non-ruderal verges and forest edges) | Grasslands/Sparsely vegetated land | 21 (12) |
H: High mountain vegetation (mountain- and oro-Mediterranean grasslands, screes and rocks, scrub above the tree line) | Grasslands/Sparsely vegetated land | 30 (20) |
P: Xeric Mediterranean phrygana and grasslands (Mediterranean dwarf shrub formations, annual-rich pastures and lowland screes) | Heathland and shrubs | 31 (15) |
R: Agricultural and ruderal habitats (fields, gardens and plantations, roadsides and trampled sites, frequently disturbed and pioneer habitats) | Cropland/Urban | 2 (1) |
W: Woodlands and scrub (broadleaved and coniferous forest, riparian and mountain forest and scrub, hedges and shady woodland margins) | Woodland and forest | 13 (2) |
General Categories of Main Components for Lamiaceae Greek Endemics | CICES Section | IPBES Name (Code) | MA | TEEB | ||
---|---|---|---|---|---|---|
Provisioning (Codes) | Regulating and Maintenance (Codes) | Cultural (Codes) | ||||
Aromatic uses | 1.1.5.1;1.1.5.2 | - | - | 12; 13; 14 | Food; fiber, timber; ornamental; biochemical | Food; raw materials; medicinal resources |
Medical properties | 1.1.5.2 | - | - | 13; 14 | Fiber, timber; ornamental; biochemical | Raw materials; medicinal resources |
Traditional medicine | 1.1.5.2 | - | 3.1.2.1;3.1.2.2; 3.1.2.3 | 6; 13; 15 | Fiber, timber; ornamental; biochemical; Knowledge systems and educational values; cultural diversity; aesthetic values; spiritual and religious values | Raw materials; medicinal resources; information and cognitive development; inspiration for culture, art and design; aesthetic information |
Antimicrobial applications | 1.1.5.2 | - | - | 14 | Fiber, timber; ornamental; biochemical | Raw materials; medicinal resources |
Environmental interest | - | 2.2.2.1; 2.2.2.3; 2.2.3.1; | 3.1.2.1;3.1.2.2; 3.1.2.4; 3.2.1.3 | 1; 2; 6; 10; 13; 15; 17 | Pest regulation; knowledge systems and educational values; cultural diversity; aesthetic values | Biological control |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheminal, A.; Kokkoris, I.P.; Strid, A.; Dimopoulos, P. Medicinal and Aromatic Lamiaceae Plants in Greece: Linking Diversity and Distribution Patterns with Ecosystem Services. Forests 2020, 11, 661. https://doi.org/10.3390/f11060661
Cheminal A, Kokkoris IP, Strid A, Dimopoulos P. Medicinal and Aromatic Lamiaceae Plants in Greece: Linking Diversity and Distribution Patterns with Ecosystem Services. Forests. 2020; 11(6):661. https://doi.org/10.3390/f11060661
Chicago/Turabian StyleCheminal, Alexian, Ioannis P. Kokkoris, Arne Strid, and Panayotis Dimopoulos. 2020. "Medicinal and Aromatic Lamiaceae Plants in Greece: Linking Diversity and Distribution Patterns with Ecosystem Services" Forests 11, no. 6: 661. https://doi.org/10.3390/f11060661
APA StyleCheminal, A., Kokkoris, I. P., Strid, A., & Dimopoulos, P. (2020). Medicinal and Aromatic Lamiaceae Plants in Greece: Linking Diversity and Distribution Patterns with Ecosystem Services. Forests, 11(6), 661. https://doi.org/10.3390/f11060661