Effects of Non-Industrial Wood Ash (NIWA) Applications on Soil Chemistry and Sugar Maple (Acer saccharum, Marsh.) Seedling Growth in an Acidic Sugar Bush in Central Ontario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plot Setup and Experimental Design
2.3. Field and Laboratory Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Wood Ash Chemistry
3.1.1. Bark and Wood Ash Chemistry from Common Ontario Tree Species
3.1.2. Non-Industrial Wood Ash Chemistry; Sugar Maple, White Pine, and Yellow Birch
3.2. Effects of Wood Ash on Soil Chemical and Physical Properties
3.2.1. Soil Base Cation Concentrations
3.2.2. Soil Metal Concentrations
3.3. Effects of Ash on Sugar Maple Seedlings
3.3.1. Seedling Growth
3.3.2. Seedling Nutrient Concentrations
3.3.3. Seedling Metal Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beamish, R.J.; Harvey, H.H. Acidification of the La Cloche Mountains Lakes, Ontario, and Resulting Fish Mortalities. Fish. Res. Board Can. 1972, 29, 1131–1143. [Google Scholar] [CrossRef]
- Scheider, W.A.; Jeffries, D.S.; Dillon, P.J. Effects of acidic precipitation on Precambrian freshwaters in southern Ontario. J. Great Lakes Res. 1979, 5, 45–51. [Google Scholar] [CrossRef]
- Johnson, D.W.; Richter, D.D.; Lovett, G.M.; Lindberg, S.E. The effects of atmospheric deposition on potassium, calcium, and magnesium cycling in two deciduous forests. Can. J. For. Res. 1989, 15, 773–782. [Google Scholar] [CrossRef]
- Likens, G.E.; Driscoll, C.T.; Buso, D.C. Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science 1996, 272, 244–246. [Google Scholar] [CrossRef]
- Duchesne, L.; Ouimet, R.; Houle, D. Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients. J. Environ. Qual. 2002, 31, 1676–1683. [Google Scholar] [CrossRef]
- McLaughlin, D.L.; Linzon, S.N.; Dimma, D.E.; McIlveen, W.D. Sugar maple decline in Ontario. In Effects of Atmospheric Pollutants in Forests, Wetlands, and Agricultural Ecosystems; Hutchinson, T.C., Meema, K.M., Eds.; Springer: New York, NY, USA, 1987; pp. 101–116. [Google Scholar]
- Horsley, S.B.; Long, R.P.; Bailey, S.W.; Hallett, R.A.; Hall, T.J. Factors associated with the decline-disease of sugar maple on the Allegheny Plateau. Can. J. For. Res. 2000, 30, 1365–1378. [Google Scholar] [CrossRef]
- Drohan, P.J.; Stout, S.L.; Petersen, G.W. Sugar maple (Acer saccharum Marsh.) decline during 1979–1989 in northern Pennsylvania. For. Ecol. Manag. 2002, 170, 1–17. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Hazlett, P.W.; Fernandez, I.J.; Ouimet, R.; Bailey, S.W.; Shortle, W.C.; Smith, K.T.; Antidormi, M.R. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada. Environ. Sci. Technol. 2015, 49, 13103–13111. [Google Scholar] [CrossRef] [PubMed]
- Huntington, T.G.; Hooper, R.P.; Johnson, C.E.; Aulenbach, B.T.; Cappellato, R.; Blum, A.E. Calcium depletion in a Southeastern United States forest ecosystem. Soil Sci. Soc. Am. J. 2000, 64, 1845–1858. [Google Scholar] [CrossRef]
- Olsson, B.A.; Bengtsson, J.; Lundkvist, H. Effects of different forest harvest intensities on the pools of exchangeable cations in coniferous forest soils. For. Ecol. Manag. 1996, 84, 135–147. [Google Scholar] [CrossRef]
- Rosenberg, O.; Jacobson, S. Effects of repeated slash removal in thinned stands on soil chemistry and understorey vegetation. Silva Fennica 2004, 38, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, C.T.; Poster, K.M.; Krester, W.; Raynal, D.J. Long-term trends in the chemistry of precipitation and lake water in the Adirondack Region of New York, USA. Water Air Soil Pollut. 1995, 85, 583–588. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronon, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C. Acid deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies: The effects of acid deposition in the northeastern United States include the acidification of soil and water, which stresses terrestrial and aquatic biota. Bioscience 2001, 51, 180–198. [Google Scholar] [CrossRef]
- Reid, C.; Watmough, S.A. Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Can. J. For. Res. 2014, 44, 867–885. [Google Scholar] [CrossRef]
- Campbell, A.G. Recycling and disposing of wood ash. Tappi J. 1990, 73, 141–146. [Google Scholar]
- Pitman, R.M. Wood ash use in forestry—A review of environmental impacts. J. For. 2006, 79, 563–588. [Google Scholar] [CrossRef] [Green Version]
- Demeyer, A.; Nkana, J.C.V.; Verloo, M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Clarholm, M. Granulated wood ash and a ‘N-free’ fertilizer to a forest soil–effects on P availability. For. Ecol. Manag. 1994, 66, 127–136. [Google Scholar] [CrossRef]
- Bramryd, T.; Fransman, B. Silviculture use of wood ashes–Effects on the nutrient and heavy metal balance in a pine (Pinus sylvestris, L) forest soil. Water Air Soil Pollut. 1995, 85, 1039–1044. [Google Scholar] [CrossRef]
- Saarsalmi, A.; Mälkönen, E.; Piirainen, S. Effects of wood ash fertilization on forest soil chemical properties. Silva Fennica 2001, 35, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, S.; Jones, T.; Preston, M.D.; Hazlett, P.; Tran, H.; Basiliko, N. Wood ash as a forest soil amendment: The role of boiler and soil type on soil property response. Can. J. Soil Sci. 2014, 94, 621–634. [Google Scholar] [CrossRef]
- Hannam, K.D.; Fleming, R.L.; Venier, L.; Hazlett, P.W. Can bioenergy ash applications emulate the effects of wildfire on upland forest soil chemical properties? Soil Sci. Soc. Am. J. 2019, 83, S201–S217. [Google Scholar] [CrossRef]
- Azan, S.S.E. Could a residential wood ash recycling programme help solve the calcium decline problem: Insights from a Muskoka wood burner’s questionnaire. In Technical Report No. 1. Friends of the Muskoka Watershed; Muskoka Watershed Council: Bracebridge, ON, Canada, 2017. [Google Scholar]
- Lamers, F.; Cremers, M.; Matschegg, D.; Schmidl, C.; Hannam, K.; Hazlett, P.; Madrail, S.; Dam, B.P.; Roberto, R.; Mager, R.; et al. Options for Increased Use of Ash from Biomass Combustion and Co-Firing. Available online: https://www.ieabioenergy.com/wp-content/uploads/2019/02/IEA-Bioenergy-Ash-management-report-revision-5-november.pdf (accessed on 1 October 2019).
- Ouimet, R.; Arp, P.; Watmough, S.; Aherne, J.; DeMerchant, I. Determination and mapping of critical loads and exceedances for upland forest soils in Eastern Canada. Water Air Soil Pollut. 2006, 172, 57–66. [Google Scholar] [CrossRef]
- Pettersen, R.C. The chemical composition of wood. In The Chemistry of Solid Wood, No. 207; U.S. Department of Agriculture: Washington, DC, USA, 1984; pp. 57–126. [Google Scholar]
- Etiégni, L.; Campbell, A.G.; Mahler, R.L. Evaluation of wood ash disposal on agricultural land. I. Potential as a soil additive and liming agent. Commun. Soil Sci. Plant Anal. 1991, 22, 243–256. [Google Scholar] [CrossRef]
- Werkelin, J.; Skrifvars, B.-J.; Hupa, M. Ash-forming elements in four Scandinavian wood species. Part 1: Summer harvest. Biomass Bioenergy 2005, 29, 451–466. [Google Scholar] [CrossRef]
- Paré, D.; Lafleur, B.; Titus, B.D.; Thiffault, E.; Maynard, D.G.; Guo, X. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests. Can. J. For. Res. 2003, 43, 599–608. [Google Scholar] [CrossRef]
- Mertens, J.; Vervaeke, P.; Meers, E.; Tack, F.M. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ. Sci. Technol. 2006, 40, 1962–1968. [Google Scholar] [CrossRef]
- Laureysens, I.; Blust, R.; Temmerman, L.D.; Lemmens, C.; Ceulemans, R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ. Pollut. 2004, 131, 485–494. [Google Scholar] [CrossRef]
- Hannam, K.D.; Venier, L.; Hope, E.; McKenney, D.; Allen, D.; Hazlett, P.W. AshNet: Facilitating the use of wood ash as a forest soil amendment in Canada. For. Chron. 2017, 93, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Brais, S.; Bélanger, N.; Guillemette, T. Wood ash and N fertilization in the Canadian boreal forest: Soil properties and response of jack pine and black spruce. For. Ecol. Manag. 2015, 348, 1–14. [Google Scholar] [CrossRef]
- Noyce, G.L.; Fulthorpe, R.; Gorgolewski, A.; Hazlett, P.; Tran, H.; Basiliko, N. Soil microbial responses to wood ash addition and forest fire in managed Ontario forests. Appl. Soil Ecol. 2016, 107, 368–380. [Google Scholar] [CrossRef]
- Domes, K.A.; de Zeeuw, T.; Massicotte, H.B.; Elkin, C.; McGill, W.B.; Jull, M.J.; Chisholm, C.E.; Rutherford, P.M. Short-term changes in spruce foliar nutrients and soil properties in response to wood ash application in the sub-boreal climate zone of British Columbia. Can. J. Soil Sci. 2018, 98, 246–263. [Google Scholar] [CrossRef] [Green Version]
- Elliot, A.; Mahmood, T. Generation and Management of Solid Residues by Canadian Pulp and Paper Mills in 2013; Confidential Report Prepared for FPInnovations: Pointe-Claire, QC, Canada, 2015. [Google Scholar]
- Azan, S.S.E.; Yan, N.D.; Celis-Salgardo, M.P.; Arnott, S.E.; Rusak, J.A.; Sutey, P. Could a residential wood ash recycling programme be part of the solution to calcium decline in lakes and forests in Muskoka (Ontario, Canada)? Facets 2019, 4, 69–90. [Google Scholar] [CrossRef]
- Baldwin, D.J.B.; Desloges, J.R.; Band, L.E. Physical geography of Ontario. In Ecology of a Managed Terrestrial Landscape: Patterns and Processes of Forest Landscapes in Ontario; Perera, A.H., Euler, D.E., Thompson, I.D., Eds.; University of British Columbia Press: Vancouver, CB, Canada, 2000; pp. 141–162. [Google Scholar]
- McLaughlin, J.W. Forest soil calcium dynamics and water quality: Implications for forest management planning. Soil Sci. Soc. Am. J. 2014, 78, 1003–1020. [Google Scholar] [CrossRef]
- Watmough, S.A.; Dillon, P.J. Major element fluxes from a coniferous catchment in central Ontario, 1983–1999. Biogeochemistry 2004, 67, 369–398. [Google Scholar] [CrossRef]
- Watmough, S.A.; Dillon, P.J. Base cation losses and nitrogen budgets for seven forested catchments in central Ontario, 1983-1999. Forest Ecol. Manag. 2003, 177, 155–177. [Google Scholar] [CrossRef]
- Gradowski, T.; Thomas, S.C. Phosphorus limitation of sugar maple growth in central Ontario. For. Ecol. Manag. 2006, 226, 104–109. [Google Scholar] [CrossRef]
- Long, R.P.; Horsley, S.B.; Hall, T.J. Long-term impact of liming on growth and vigor of northern hardwoods. Can. J. For. Res. 2011, 41, 1295–1307. [Google Scholar] [CrossRef]
- Moore, J.-D.; Ouimet, R.; Duchesne, L. Soil and sugar maple responses 15 years after dolomitic lime application. For. Ecol. Manag. 2012, 281, 130–139. [Google Scholar] [CrossRef]
- Gorgolewski, A.; Caspersen, J.; Hazlett, P.; Jones, T.; Tran, H.; Basiliko, N. Responses of eastern red-backed salamander (Plethodon cinereus) abundance 1 year after application of wood ash in a northern hardwood forest. Can. J. For. Res. 2016, 46, 402–409. [Google Scholar] [CrossRef]
- Riley, K. Algonquin sugarbush calcium/lime study 2016. In Proceedings of the Ontario Maple Syrup Producer’s Association, Maple Information Day, Sundridge, ON, Canada, 16 January 2017. [Google Scholar]
- Environment Canada. 2019. Canadian Climate Normals 1981–2010 Station Data. Available online: http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnProx&txtRadius=50&selCity=43%7C39%7C79%7C23%7CToronto&selPark=&optProxType=custom&txtCentralLatDeg=45&txtCentralLatMin=08&txtCentralLatSec=0&txtCentralLongDeg=79&txtCentralLongMin=46&txtCentralLongSec=0&stnID=4410&dispBack=0 (accessed on 15 January 2020).
- Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed.; NRC Research Press: Boca Raton, FL, USA; Agriculture and Agri-Food Canada Publication: Ottawa, ON, Canada, 1998; pp. 1–187. [Google Scholar]
- Gaucher, C.; Gougeon, S.; Mauffette, Y.; Messier, C. Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings. Tree Physiol. 2005, 25, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2016. [Google Scholar]
- Nutrient and Management Act. Government of Ontario. O. Reg. 267/03, General under Nutrient and Management Act, 2002, S.O. 2002, c.4. Available online: https://www.ontario.ca/laws/regulation/030267 (accessed on 16 August 2018).
- Kolb, T.E.; McCormick, L.H. Etiology of sugar maple decline in four Pennsylvania stands. Can. J. For. Res. 1993, 23, 2395–2402. [Google Scholar] [CrossRef]
- ASHMuskoka. Available online: https://ashmuskoka.ca/about-hatsoff/ (accessed on 7 June 2020).
- Watmough, S.A. A dendrochemical survey of sugar maple (Acer saccharum Marsh) in South-Central Ontario, Canada. Water Air Soil Pollut. 2002, 136, 165–187. [Google Scholar] [CrossRef]
- Chirenje, T.; Ma, L.Q. Impact of high-volume wood-fired boiler ash amendment on soil properties and nutrients. Commun. Soil Sci. Plan. 2002, 33, 1–17. [Google Scholar] [CrossRef]
- Vance, E.D. Land application of wood-fired and combination boiler ashes: An overview. J. Environ. Qual. 1996, 25, 937–944. [Google Scholar] [CrossRef]
- AshNet. Canadian Wood Ash Chemistry Database. Available online: https://www.nrcan.gc.ca/science-and-data/research-centres-and-labs/forestry-research-centres/great-lakes-forestry-centre/ashnet/canadian-wood-ash-chemistry-database/20288 (accessed on 16 January 2018).
- Naylor, L.M.; Schmidt, E.J. Agricultural use of wood ash as a fertilizing and liming material: Field trials. Tappi J. 1996, 69, 114–119. [Google Scholar]
- Arvidsson, H.; Lundkvist, H. Effects of crushed wood ash on soil chemistry in young Norway spruce stands. For. Ecol. Manag. 2003, 176, 121–132. [Google Scholar] [CrossRef]
- Erich, M.S.; Ohno, T. Phosphorus availability to corn from wood ash-amended soils. Water Air Soil Pollut. 1992, 64, 475–485. [Google Scholar] [CrossRef]
- Ulery, A.L.; Graham, R.C.; Amrhein, C. Wood-ash composition and soil pH following intense burning. Soil Sci. 1993, 156, 358–364. [Google Scholar] [CrossRef]
- Saarsalmi, A.; Mälkönen, E.; Kukkola, M. Effects of wood ash fertilization on soil chemical properties and stand nutrient status and growth of some coniferous stands in Finland. Scand. J. For. Res. 2004, 19, 217–233. [Google Scholar] [CrossRef]
- Martikainen, P.J. Nitrification in two coniferous forest soils after different fertilization treatment. Soil Biol. Biochem. 1984, 16, 577–582. [Google Scholar] [CrossRef]
- Levula, T.; Saarsalmi, A.; Rantavaara, A. Effects of ash fertilization and prescribed burning on macronutrient, heavy metal, sulphur and 137Cs concentrations in lingonberries (Vaccinium vitis-idaea). For. Ecol. Manag. 2000, 126, 269–279. [Google Scholar] [CrossRef]
- Kahl, J.; Fernandez, R.; Rustad, L.; Peckenham, J. Threshold application rates of wood ash to an acidic forest soil. J. Environ. Qual. 1996, 25, 220–227. [Google Scholar] [CrossRef]
- Jacobson, S.; Högbom, L.; Ring, E.; Nohrstedt, H.-O. Effects of wood ash dose and formulation on soil chemistry at two coniferous forest sites. Water Air Soil Pollut. 2005, 158, 113–125. [Google Scholar] [CrossRef]
- Augusto, L.; Bakker, M.R.; Meredieu, C. Wood ash applications to temperate forest ecosystems–potential benefits and drawbacks. Plant Soil. 2008, 306, 181–198. [Google Scholar] [CrossRef]
- Hansen, M.; Bang-Andreasen, T.; Sørensend, H.; Ingerslev, M. Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. For. Ecol. Manag. 2017, 406, 274–280. [Google Scholar] [CrossRef]
- Watmough, S.A.; McDonough, A.M.; Raney, S.M. Characterizing the influence of highways on springtime NO2 and NH3 concentrations in regional forest monitoring plots. Environ. Pollut. 2014, 190, 150–158. [Google Scholar] [CrossRef]
- Osman, K.T. Physical properties of soil. In Forest Soils: Properties and Management; Springer International Publishing: New Delhi, India, 2013; pp. 49–65. [Google Scholar]
- Kinch, J.C. The Relationships between Soil and Foliar Chemistry and the Decline of Acer Saccharum in Ontario. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 1989. [Google Scholar]
- Adams, C.M.; Hutchinson, T.C. Fine-root growth and chemical composition in declining Central Ontario sugar maple stands. Can. J. For. Res. 1992, 22, 1489–1503. [Google Scholar] [CrossRef]
- Ozolinčius, R. Wood ash and nitrogen influence on ground vegetation cover and chemical composition. Biomass Bioenerg. 2007, 31, 710–716. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Thornton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Spec. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Unger, Y.L.; Fernandez, I.J. The short-term effects of wood-ash amendment on forest soils. Water, Air Soil Pollut. 1990, 49, 299–314. [Google Scholar] [CrossRef]
- Bundt, M.; Zimmermann, S.; Blaser, P.; Hagedorn, F. Sorption and transport of metals in preferential flow paths and soil matrix after the addition of wood ash. Eur. J. Soil Sci. 2001, 52, 423–431. [Google Scholar] [CrossRef]
- Nieminen, M.; Piirainen, S.; Moilanen, M. Release of mineral nutrients and heavy metals from wood and peat ash fertilizers: Field studies in Finnish forest soils. Scand. J. For. Res. 2005, 20, 146–153. [Google Scholar] [CrossRef]
- Narodoslawsky, N.; Obernberger, I. From waste to raw material–the route from biomass to wood ash for cadmium and other heavy metals. J. Hazard. Mater. 1996, 50, 157–168. [Google Scholar] [CrossRef]
- Hannam, K.D.; Deschamps, C.; Kwiaton, M.; Venier, L.; Hazlett, P.W. Regulations and Guidelines for the Use of Wood Ash as a Soil Amendment in Canadian Forests; Natural Resources Canada; Canadian Forestry Service: Sault Ste. Marie, ON, Canada, 2016.
- Long, R.P.; Horsley, S.B.; Lilja, P.R. Impact of forest liming on growth and crown vigor of sugar maple and associated hardwoods. Can. J. For. Res. 1997, 27, 1560–1573. [Google Scholar] [CrossRef]
- Juice, S.M.; Fahey, T.J.; Siccama, T.G.; Driscoll, C.T.; Denny, E.G.; Eagar, C.; Cleavitt, N.L.; Minocha, R.; Richardson, A.D. Responses of sugar maple to calcium addition to northern hardwood forest. Ecology 2006, 87, 1267–1280. [Google Scholar] [CrossRef]
- Moore, J.-D.; Ouimet, R. Ten year effect of dolomitic lime on the nutrition, crown vigor, and growth of sugar maple. Can. J. For. Res. 2006, 36, 1834–1841. [Google Scholar] [CrossRef]
- Huggett, B.A.; Schaberg, P.G.; Hawley, G.J.; Eager, C. Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest. Can. J. For. Res. 2007, 37, 1692–1700. [Google Scholar] [CrossRef] [Green Version]
- Casson, N.J.; Eimers, M.C.; Watmough, S.A. An assessment of the nutrient status of sugar maple in Ontario: Indications of phosphorus limitation. Environ. Monit. Assess. 2012, 184, 5917–5927. [Google Scholar] [CrossRef]
- Moore, J.-D.; Ouimet, R. Effects of two Ca fertilizer types on sugar maple vitality. Can. J. For. Res. 2010, 40, 1985–1992. [Google Scholar] [CrossRef]
- Unger, Y.L.; Fernandez, I.J. TB134: A Laboratory Study to Assess Methods for Predicting pH Change of Ash Amended Forest Soils; Maine Agricultural Experimental Station: Orono, ME, USA, 1984. [Google Scholar]
- Moore, J.-D.; Camire, C.; Ouimet, R. Effects of liming on the nutrition, vigor and growth of sugar maple at the Lake Clair Watershed, Quebec, Canada. Can. J. For. Res. 2000, 30, 725–732. [Google Scholar] [CrossRef]
- Brunner, I.; Zimmermann, S.; Zingg, A.; Blaser, P. Wood-ash recycling affects forest soil and tree fine-root chemistry and reverses soil acidification. Plant Soil. 2004, 267, 61–71. [Google Scholar] [CrossRef]
- Jones, D.L.; Quilliam, R.S. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application. J. Hazard Mater. 2014, 276, 362–370. [Google Scholar] [CrossRef]
- Ludwig, B.; Rumpf, S.; Mindrup, M.; Meiwes, K.-J.; Khanna, P.K. Effects of lime and wood ash on soil-solution chemistry, soil chemistry and nutritional status of a pine stand in northern Germany. Scand. J. For. Res. 2002, 17, 225–227. [Google Scholar] [CrossRef]
- Rumpf, S.; Ludwig, B.; Mindrup, M. Effect of wood ash on soil chemistry of a pine stand in Northern Germany. J. Plant Nutr. Soil Sci. 2001, 164, 569–575. [Google Scholar] [CrossRef]
- Heim, A.; Luster, J.; Brunner, I.; Frey, B.; Frossard, E. Effects of aluminum treatment on Norway spruce roots: Aluminum binding forms, element distribution, and release of organic acids. Plant Soil. 1999, 216, 103–116. [Google Scholar] [CrossRef]
- Lucchini, P.; Quilliam, R.S.; Deluca, T.H.; Vamerali, T.; Jones, D.L. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environ. Sci. Pollut. Res. Int. 2014, 21, 3230–3240. [Google Scholar] [CrossRef]
- Macnicol, R.D.; Beckett, P.H.T. Critical tissue concentrations of potentially toxic elements. Plant Soil. 1985, 85, 107–129. [Google Scholar] [CrossRef]
- Ghodrati, M.; Sims, J.T.; Vasilas, B.L. Evaluation of fly ash as a soil amendment for the Atlantic Coastal Plain: I. Soil hydraulic properties and elemental leaching. Water Air Soil Pollut. 1995, 81, 349–361. [Google Scholar] [CrossRef]
Tissue Type | Off Shield * (pH 5.2) | On Shield † (pH 4.1) | p Value |
---|---|---|---|
Bark | |||
Ca (g·kg−1) | 210.9 (161–250) | 216.7 (13–313) | 0.006 |
Mg (g·kg−1) | 11.4 (4.1–22) | 10.2 (1.9–37) | 0.412 |
K (g·kg−1) | 42.7 (4.8–142) | 25.7 (1.6–138) | 0.278 |
Na (g·kg−1) | 0.9 (0.3–2.7) | - | - |
Mn (g·kg−1) | 0.5 (0.2–0.9) | 9.7 (0.1–17.4) | 0.002 |
Al (g·kg−1) | 3.9 (0.8–8.5) | 5.8 (0.8–15) | 0.120 |
Fe (g·kg−1) | 3.4 (0.8–6.2) | 3.9 (0.5–7.3) | 0.408 |
B (mg·kg−1) | 284.5 (41–510) | 211.8 (56–644) | 0.593 |
As (mg·kg−1) | 2.5 (1.1–5.1) | - | - |
Cd (mg·kg−1) | 1.5 (0.5–4.1) | 38.6 (0–66.9) | 0.033 |
Zn (mg·kg−1) | 355.7 (86–774) | 1045.8 (139–2428) | <0.001 |
Cu (mg·kg−1) | 101.8 (31–224) | 122.0 (0.8–378) | 0.958 |
Pb (mg·kg−1) | 11.8 (1.3–56) | 42.9 (2.6–176) | 0.115 |
Cr (mg·kg−1) | 5.8 (2.2–13) | 18.0 (1.3–34.9) | 0.083 |
Ni (mg·kg−1) | 29.1 (5.0–87) | 60.6 (6.0–140) | 0.078 |
Se (mg·kg−1) | 1.8 (0.3–3.4) | 10.9 (0–43) | 0.017 |
Sr (mg·kg−1) | 528.4 (217–983) | 77.9 (0–2594) | 0.178 |
Ba (g·kg−1) | 0.4 (0.1–1.2) | 2.8 (0.3–8.7) | <0.001 |
Stemwood | |||
Ca (g·kg−1) | 211.9 (137–266) | 126.7 (19–313) | 0.191 |
Mg (g·kg−1) | 11.4 (9.8–31) | 10.2 (3.6–52) | 0.790 |
K (g·kg−1) | 42.7 (9.4–154) | 25.7 (7.3–174) | 0.876 |
Na (g·kg−1) | 1.8 (0.5–5.4) | - | - |
Mn (g·kg−1) | 0.5 (0.2–1.3) | 9.7 (0.5–27) | <0.001 |
Al (g·kg−1) | 2.0 (0.5–6.5) | 3.2 (0.2–11) | 0.106 |
Fe (g·kg−1) | 3.4 (0.7–7.4) | 3.9 (0.4–11) | 0.650 |
B (mg·kg−1) | 401.9 (137–705) | 318.4 (47–844) | 0.287 |
As (mg·kg−1) | 3.6 (1.0–15) | - | - |
Cd (mg·kg−1) | 1.8 (0.5–11) | 13.9 (1.0–56) | 0.017 |
Zn (mg·kg−1) | 457.8 (62–1172) | 1097.1 (197–3073) | 0.024 |
Cu (mg·kg−1) | 196.0 (44–554) | 174.7 (46–864) | 0.973 |
Pb (mg·kg−1) | 11.4 (2.0–65) | 57.2 (3.3–239) | 0.019 |
Cr (mg·kg−1) | 5.7 (2.5–17) | 28.2 (5.3–73.4) | 0.002 |
Ni (mg·kg−1) | 56.5 (11–297) | 316.3 (21–729) | 0.002 |
Se (mg·kg−1) | 3.3 (1.0–7.3) | 12.9 (3.1–39) | <0.001 |
Sr (mg·kg−1) | 569.0 (318–1284) | 908.1 (149–2607) | 0.053 |
Ba (g·kg−1) | 0.4 (0.1–1.4) | 3.5 (0.2–11) | <0.001 |
Sugar Maple Ash | White Pine Ash | Yellow Birch Ash | Non-Agricultural Source Material † Limits | ||
---|---|---|---|---|---|
CM1 | CM2 | ||||
pH | 13.0 (0.1) | 12.4 (0.1) | 12.1 (0.1) | ||
EC (mS·m−1) | 13 400 (34) | 9 600 (22) | 7 900 (28) | ||
LOI (g·kg−1) | 18.9 (021) | 26.1 (1.2) | 41.8 (11.4) | ||
C (g·kg−1) | 42.6 (0.7) | 102 (2) | 107 (3) | ||
N (g·kg−1) | 0.6 (0.0) | 0.9 (0.2) | 1.0 (0.1) | ||
S (g·kg−1) | 0.1 (0.1) | 0.2 (0.1) | 0.6 (0.5) | ||
Ca (g·kg−1) | 156 (39) | 250 (2) | 209 (5) | ||
Mg (g·kg−1) | 9.9 (1.7) | 9.6 (0.2) | 10.1 (0.4) | ||
K (g·kg−1) | 31.1 (7.7) | 59.2 (1.0) | 62.5 (1.3) | ||
Na (g·kg−1) | 2.1 (0.5) | 0.5 (0) | 4.6 (0.2) | ||
Mn (g·kg−1) | 7.1 (1.6) | 1.1 (0) | 6.9 (0.2) | ||
Al (g·kg−1) | 8.1 (1.3) | 0.6 (0) | 10.0 (0.3) | ||
Fe (g·kg−1) | 3.9 (0.1) | 0.6 (0) | 1.1 (0) | ||
B (mg·kg−1) | 128 (29) | 216 (5) | 324 (6) | ||
Mo (mg·kg−1) | 1.4 (0.3) | 2.8 (0.2) | 0.6 (0) | 5 | 94 |
As (mg·kg−1) | bdl | 1.4 (0) | 9.5 (0.3) | 13 | 170 |
Cd (mg·kg−1) | 1.6 (0.4) | 1.2 (0) | 9.4 (0.3) | 3 | 34 |
Zn (mg·kg−1) | 211 (51.2) | 183 (3) | 2389 (88) | 500 | 4200 |
Cu (mg·kg−1) | 66.1 (14.6) | 90.5 (1.6) | 207 (4) | 100 | 1700 |
Pb (mg·kg−1) | bdl | 4.7 (0.1) | 29.7 (1.0) | 150 | 1100 |
Cr (mg·kg−1) | 49.1 (11.6) | 4.2 (0.2) | 7.3 (0.2) | 210 | 2800 |
Co (mg·kg−1) | 2.6 (0.5) | 0.8 (0.1) | 4.9 (0.2) | 34 | 340 |
Ni (mg·kg−1) | 5.9 (1.1) | 4.4 (0.2) | 6.5 (0.3) | 62 | 420 |
Se (mg·kg−1) | 3.9 (0.8) | 2.0 (0.2) | 5.7 (0.2) | 2 | 34 |
Be (mg·kg−1) | 0.2 (0.1) | 0.1 (0.1) | 0 (0) | ||
V (mg·kg−1) | 5.7 (1.3) | 1.1 (0.1) | 1.5 (0) | ||
Sr (mg·kg−1) | 606 (150) | 824 (11) | 1009 (147) | ||
Ba (mg·kg−1) | 1197 (285) | 880 (18) | 2939 (63) |
Horizon | Control (n = 7) | Sugar Maple (n = 5) | White Pine (n = 5) | Yellow Birch (n = 3) | p Value |
---|---|---|---|---|---|
LFH | |||||
pH (CaCl2) | 4.1 (0.1) | 5.2 (0.4) * | 5.1 (0.2) * | 4.5 (0.2) | 0.005 |
EC (mS·m−1) | 123.7 (10.4) | 178.1 (30.4) | 149.2 (22.2) | 125.8 (15.4) | 0.179 |
OM (%) | 90.2 (1.0) | 90.6 (1.5) | 90.0 (0.6) | 90.7 (1.8) | 0.965 |
Ca (g·kg−1) | 8.64 (0.72) a | 13.69 (2.01) b,* | 13.50 (3.15) b,* | 10.90 (2.03) a,b | 0.049 |
Mg (g·kg−1) | 0.75 (0.05) a | 1.18 (0.14) b,* | 0.85 (0.13) a | 0.68 (0.04) a | 0.048 |
K (g·kg−1) | 1.08 (0.08) | 1.41 (0.16) | 1.00 (0.20) | 1.14 (0.11) | 0.354 |
Na (g·kg−1) | 0.16 (0.01) | 0.21 (0.04) | 0.16 (0.02) | 0.19 (0.04) | 0.384 |
Ah | |||||
pH (CaCl2) | 3.5 (0.1) a | 4.8 (0.2) c,* | 4.4 (0.2) b,c,* | 4.0 (0.2) b,* | <0.001 |
EC (mS·m−1) | 95.2 (14.6) | 120.4 (24.1) | 82.6 (12.1) | 62.3 (19.3) | 0.139 |
OM (%) | 22.4 (3.0) | 15.6 (1.0) | 19.2 (2.1) | 21.7 (3.2) | 0.203 |
Ca (g·kg−1) | 1.39 (0.15) a | 2.94 (0.45) b,* | 3.61 (1.21) b,* | 1.52 (0.44) a | 0.077 |
Mg (g·kg−1) | 0.76 (0.09) | 0.79 (0.09) | 0.95 (0.13) | 0.68 (0.13) | 0.476 |
K (g·kg−1) | 0.51 (0.03) | 0.46 (0.02) | 0.45 (0.04) | 0.40 (0.04) | 0.213 |
Na (g·kg−1) | 0.27 (0.01) | 0.24 (0.02) | 0.25 (0.02) | 0.27 (0.04) | 0.732 |
Bm | |||||
pH (CaCl2) | 3.8 (0.1) | 3.8 (0.1) | 3.9 (0.1) | 3.9 (0.1) | 0.320 |
EC (mS·m−1) | 30.2 (1.6) | 35.7 (4.3) | 35.6 (1.7) | 34.0 (6.3) | 0.440 |
OM (%) | 13.9 (5.2) | 10.3 (0.4) | 16.2 (3.5) | 15.9 (0.6) | 0.113 |
Ca (g·kg−1) | 0.79 (0.08) | 0.96 (0.10) | 0.82 (0.07) | 1.02 (0.18) | 0.397 |
Mg (g·kg−1) | 1.22 (0.19) | 0.98 (0.25) | 1.01 (0.12) | 1.15 (0.15) | 0.765 |
K (g·kg−1) | 0.51 (0.12) | 0.44 (0.06) | 0.38 (0.05) | 0.34 (0.04) | 0.616 |
Na (g·kg−1) | 0.28 (0.03) | 0.26 (0.01) | 0.26 (0.02) | 0.29 (0.02) | 0.772 |
Ca (g·kg−1) | 0.79 (0.08) | 0.96 (0.10) | 0.82 (0.07) | 1.02 (0.18) | 0.397 |
Treatment | n | Mn | Al | Fe | B | As | Cd | Zn | Cu | Pb | Cr | Ni | Se | Sr | Ba |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-------- (g·kg−1) -------- | --------------------------------------------------------------- (mg·kg−1) --------------------------------------------------------------- | ||||||||||||||
Control | 7 | 1.45 (0.23) | 0.67 (0.16) | 1.74 (0.55) | 12.92 (1.31) | 1.34 (0.17) | 0.76 (0.17) | 59.98 a (14.81) | 11.29 (0.57) | 4.18 (1.14) | 36.03 (10.31) | 3.51 (0.35) | 2.25 (0.17) | 48.63 (4.03) | 122.2 (11.87) |
Sugar Maple | 5 | 1.43 (0.21) | 0.86 (0.17) | 2.40 (1.35) | 16.25 (1.17) | 1.32 (0.08) | 0.73 (0.12) | 73.74 a,b (15.58) | 16.23 (3.20) | 3.30 (0.51) | 74.64 (55.92) | 4.42 (1.52) | 2.30 (0.23) | 63.85 (9.24) | 147.8 (20.06) |
White Pine | 5 | 1.02 (0.18) | 0.63 (0.21) | 1.34 (0.25) | 17.14 (3.98) | 1.19 (0.17) | 0.61 (0.14) | 62.69 a (14.81) | 11.60 (2.08) | 2.81 (0.19) | 24.25 (4.35) | 2.87 (0.30) | 1.88 (0.30) | 75.30 (17.0) | 112.8 (21.95) |
Yellow Birch | 3 | 1.00 (0.10) | 0.85 (0.43) | 1.84 (1.22) | 17.26 (2.42) | 1.73 (0.40) | 0.92 (0.37) | 122.3 b,* (46.29) | 15.87 (3.47) | 4.17 (1.15) | 46.63 (36.61) | 4.51 (1.31) | 2.57 (0.48) | 67.17 (20.3) | 184.0 (53.02) |
p value | |||||||||||||||
Treatment | 0.339 | 0.766 | 0.967 | 0.804 | 0.405 | 0.777 | 0.084 | 0.358 | 0.546 | 0.957 | 0.647 | 0.387 | 0.802 | 0.555 |
Treatment | n | Belowground Biomass (g) | Aboveground Biomass (g) | R:S Ratio | P:nP Ratio |
---|---|---|---|---|---|
Control | 35 | 0.28 ± 0.02 g | 0.72 ± 0.04 g | 0.39 ± 0.02 | 0.48 ± 0.04 |
Sugar Maple | 25 | 0.28 ± 0.02 g | 0.72 ± 0.04 g | 0.43 ± 0.05 | 0.64 ± 0.10 |
White Pine | 25 | 0.30 ± 0.02 g | 0.70 ± 0.04 g | 0.45 ± 0.04 | 0.48 ± 0.04 |
Yellow Birch | 15 | 0.29 ± 0.07 g | 0.71 ± 0.11 g | 0.44 ± 0.09 | 0.42 ± 0.07 |
p value | |||||
Treatment | 0.924 | 0.701 | 0.839 | 0.302 |
Tissue Type | Ash Treatment | ---- Concentration (g·kg−1) ---- | ---------------------------------Concentration (mg·kg−1) --------------------------------- | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | Mn | Al | Fe | B | As | Cd | Zn | Cu | Pb | Cr | Ni | ||
Foliage | Control | 0.83 (0.16) | 2.05 (0.43) | 0.47 (0.08) | 0.69 (0.12) | 45.98 (4.85) | 1.79 (0.21) | 0.92 (0.14) | 65.76 (8.12) | 21.18 (2.30) | 5.66 (1.00) | 1.71 (0.21) | 6.46 (0.72) |
Sugar Maple | 0.64 (0.08) | 1.73 (0.30) | 0.94 (0.45) | 1.65 (0.80) | 49.07 (7.33) | 1.76 (0.15) | 1.11 (0.22) | 68.77 (7.13) | 20.83 (1.57) | 7.03 (1.70) | 2.32 (0.52) | 5.39 (0.31) | |
White Pine | 0.53 (0.07) | 1.73 (0.37) | 0.42 (0.05) | 0.73 (0.11) | 45.36 (2.75) | 1.72 (0.18) | 1.12 (0.10) | 64.15 (5.76) | 21.19 (1.35) | 5.08 (0.71) | 1.49 (0.10) | 5.90 (0.39) | |
Yellow Birch | 1.15 (0.31) | 2.02 (0.58) | 0.62 (0.13) | 0.76 (0.14) | 59.61 (10.90) | 1.96 (0.29) | 1.41 (0.18) | 88.86 (10.29) | 24.18 (2.80) | 6.34 (0.43) | 1.82 (0.24) | 6.97 (0.12) | |
p value | |||||||||||||
0.117 | 0.911 | 0.397 | 0.328 | 0.488 | 0.908 | 0.321 | 0.269 | 0.773 | 0.680 | 0.312 | 0.358 | ||
Stem | Control | 1.52 (0.41) | 4.32 a,b (0.66) | 0.84 a (0.20) | 0.93 a (0.12) | 66.91 a (5.39) | 6.96 a (0.66) | 5.06 a (0.55) | 180.21 a (19.18) | 23.31 a (3.16) | 11.49 a (0.54) | 1.75 a (0.15) | 6.50 a (0.95) |
Sugar Maple | 1.84 (0.44) | 6.95 b,* (0.77) | 1.13 a (0.28) | 1.82 a,b (0.43) | 139.21 b,* (21.89) | 11.65 b,* (0.29) | 9.20 b,* (0.19) | 271.63 a (21.92) | 44.38 b,* (7.74) | 22.18 b,* (2.94) | 4.39 c,* (0.43) | 7.68 a,b (1.35) | |
White Pine | 1.55 (0.14) | 5.26 a,b (0.65) | 1.10 a (0.24) | 1.99 a,b (0.56) | 119.66 b,* (10.49) | 9.37 a,b (0.99) | 7.66 b,* (0.64) | 264.60 a (66.28) | 44.58 b,* (4.50) | 21.70 b,* (3.99) | 2.67 a,b (0.44) | 7.56 a,b (0.54) | |
Yellow Birch | 1.16 (0.28) | 6.97 b,* (1.28) | 3.81 b,* (1.43) | 2.21 b,* (0.78) | 131.45 b,* (20.18) | 11.08 b,* (1.49) | 9.59 b,* (0.16) | 422.14 b,* (21.85) | 41.89 a,b (12.87) | 38.54 c,* (15.44) | 2.89 b,* (0.16) | 14.82 c,* (2.65) | |
p value | |||||||||||||
0.629 | 0.022 | 0.006 | 0.097 | 0.001 | 0.001 | <0.001 | 0.003 | 0.025 | 0.003 | <0.001 | <0.001 | ||
Root | Control | 1.81 (0.21) | 2.62 a (0.41) | 5.48 (1.34) | 5.96 (1.05) | 49.81 a (6.83) | 6.83 a (0.33) | 5.71 a (0.29) | 233.46 a (22.57) | 37.18 a (4.82) | 64.48 a (16.31) | 5.09 (0.57) | 19.20 (2.76) |
Sugar Maple | 2.24 (0.58) | 3.89 a (0.61) | 4.08 (0.44) | 6.16 (1.20) | 83.76 a,b (24.40) | 11.63 b,* (2.03) | 9.72 b,c,* (1.67) | 381.99 a (72.50) | 61.80 a,b (17.32) | 98.88 a,b (17.09) | 8.12 (1.46) | 20.38 (5.07) | |
White Pine | 1.75 (0.25) | 3.88 a (0.52) | 7.42 (1.86) | 8.26 (0.95) | 64.52 a,b (18.66) | 9.26 a,b (1.11) | 7.71 a,b (0.91) | 419.61 a (122.36) | 57.41 a,b (11.22) | 92.77 a,b (31.52) | 7.16 (1.03) | 21.48 (5.43) | |
Yellow Birch | 2.76 (0.32) | 7.80 b,* (2.99) | 5.17 (1.01) | 5.29 (1.05) | 111.40 b,* (15.32) | 14.47 b,* (2.48) | 12.27 c,* (2.82) | 920.58 b,* (63.13) | 89.84 b,* (17.82) | 128.63 b,* (40.30) | 7.46 (0.73) | 34.96 (12.99) | |
p value | |||||||||||||
0.155 | 0.003 | 0.421 | 0.246 | 0.047 | 0.011 | 0.017 | <0.001 | 0.019 | 0.093 | 0.104 | 0.325 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deighton, H.D.; Watmough, S.A. Effects of Non-Industrial Wood Ash (NIWA) Applications on Soil Chemistry and Sugar Maple (Acer saccharum, Marsh.) Seedling Growth in an Acidic Sugar Bush in Central Ontario. Forests 2020, 11, 693. https://doi.org/10.3390/f11060693
Deighton HD, Watmough SA. Effects of Non-Industrial Wood Ash (NIWA) Applications on Soil Chemistry and Sugar Maple (Acer saccharum, Marsh.) Seedling Growth in an Acidic Sugar Bush in Central Ontario. Forests. 2020; 11(6):693. https://doi.org/10.3390/f11060693
Chicago/Turabian StyleDeighton, Holly D., and Shaun A. Watmough. 2020. "Effects of Non-Industrial Wood Ash (NIWA) Applications on Soil Chemistry and Sugar Maple (Acer saccharum, Marsh.) Seedling Growth in an Acidic Sugar Bush in Central Ontario" Forests 11, no. 6: 693. https://doi.org/10.3390/f11060693
APA StyleDeighton, H. D., & Watmough, S. A. (2020). Effects of Non-Industrial Wood Ash (NIWA) Applications on Soil Chemistry and Sugar Maple (Acer saccharum, Marsh.) Seedling Growth in an Acidic Sugar Bush in Central Ontario. Forests, 11(6), 693. https://doi.org/10.3390/f11060693