Intensive Mechanical Site Preparation to Establish Short Rotation Hybrid Poplar Plantations—A Case-Study in Québec, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Sapling Measurements
2.3. Foliar and Soil Nutrients
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paquette, A.; Messier, C. The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 2010, 8, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Barua, S.K.; Lehtonen, P.; Pahkasalo, T. Plantation vision: Potentials, challenges and policy options for global industrial forest plantation development. Int. For. Rev. 2014, 16, 117–127. [Google Scholar] [CrossRef]
- Payn, T.; Carnus, J.-M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J. Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Balandier, P.; Collet, C.; Miller, J.H.; Reynolds, P.E.; Zedaker, S.M. Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 2006, 79, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Thiffault, N.; Jobidon, R.; Munson, A.D. Comparing large containerized and bareroot conifer stock on sites of contrasting vegetation composition in a non-herbicide scenario. New For. 2014, 45, 875–891. [Google Scholar] [CrossRef]
- Goehing, J.; Henkel-Johnson, D.; Macdonald, S.E.; Bork, E.W.; Thomas, B.R. Spatial partitioning of competitive effects from neighbouring herbaceous vegetation on establishing hybrid poplars in plantations. Can. J. For. Res. 2019, 49, 595–605. [Google Scholar] [CrossRef]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Abiotic and biotic factors controlling fine root biomass, carbon and nutrients in closed-canopy hybrid poplar stands on post-agricultural land. Sci. Rep. 2019, 9, 6296. [Google Scholar] [CrossRef]
- Thomas, B.R.; Schreiber, S.G.; Kamelchuk, D.P. Impact of planting container type on growth and survival of three hybrid poplar clones in central Alberta, Canada. New For. 2016, 47, 815–827. [Google Scholar] [CrossRef]
- Grenke, J.S.J.; Macdonald, S.E.; Thomas, B.R.; Moore, C.A.; Bork, E.W. Relationships between understory vegetation and hybrid poplar growth and size in an operational plantation. For. Chron. 2016, 92, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Mamashita, T.; Larocque, G.R.; DesRochers, A.; Beaulieu, J.; Thomas, B.R.; Mosseler, A.; Major, J.; Sidders, D. Short-term growth and morphological responses to nitrogen availability and plant density in hybrid poplars and willows. Biomass Bioenerg. 2015, 81, 88–97. [Google Scholar] [CrossRef]
- Masse, S.; Marchand, P.P.; Bernier-Cardou, M. Forecasting the deployment of short-rotation intensive culture of willow or hybrid poplar: Insights from a Delphi study. Can. J. For. Res. 2014, 44, 422–431. [Google Scholar] [CrossRef]
- Larocque, G.R.; DesRochers, A.; Larchevêque, M.; Tremblay, F.; Beaulieu, J.; Mosseler, A.; Major, J.E.; Gaussiran, S.; Thomas, B.R.; Sidders, D.; et al. Research on hybrid poplars and willow species for fast-growing tree plantations: Its importance for growth and yield, silviculture, policy-making and commercial applications. For. Chron. 2013, 89, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Stanturf, J.A.; van Oosten, C. Operational poplar and willow culture. In Poplars and Willow: Trees for Society and the Environment; Isebrands, J.G., Richardson, J., Eds.; FAO: Rome, Italy, 2014; pp. 200–257. [Google Scholar]
- Bilodeau-Gauthier, S.; Paré, D.; Messier, C.; Bélanger, N. Juvenile growth of hybrid poplars on acidic boreal soil determined by environmental effects of soil preparation, vegetation control, and fertilization. For. Ecol. Manag. 2011, 261, 620–629. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, R.; Rytter, L.; Hjelm, K. Effects of soil preparation methods and plant types on the establishment of poplars on forest land. Ann. For. Sci. 2017, 74, 1–12. [Google Scholar]
- Forest Products Association of Canada. Forest Certification in Canada. The Programs, Similarities and Achievements; Forest Products Association of Canada (FPAC): Ottawa, ON, Canada, 2011. [Google Scholar]
- Québec, Sustainable Forest Development Act. Chapter A-18.1. In Les Publications du Québec: Québec, QC, Canada. 2020. Available online: http://legisquebec.gouv.qc.ca/en/ShowDoc/cs/A-18.1 (accessed on 10 June 2020).
- Bilodeau-Gauthier, S.; Paré, D.; Messier, C.; Bélanger, N. Root production of hybrid poplars and nitrogen mineralization improve following mounding of boreal Podzols. Can. J. For. Res. 2013, 43, 1092–1103. [Google Scholar] [CrossRef] [Green Version]
- Messier, C.; Coll, L.; Poitras-Larivière, A.; Bélanger, N.; Brisson, J. Resource and non-resource root competition effects of grasses on early- versus late-successional trees. J. Ecol. 2009, 97, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Löf, M.; Dey, D.C.; Navarro, R.M.; Jacobs, D.F. Mechanical site preparation for forest restoration. New For. 2012, 43, 825–848. [Google Scholar] [CrossRef]
- Pennanen, T.; Heiskanen, J.; Korkama, T. Dynamics of ectomycorrhizal fungi and growth of Norway spruce seedlings after planting on a mounded forest clearcut. For. Ecol. Manag. 2005, 213, 243–252. [Google Scholar]
- Bolte, A.; Löf, M. Root spatial distribution and biomass partitioning in Quercus robur L. seedlings: The effects of mounding site preparation in oak plantations. Eur. J. For. Res. 2010, 129, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Buitrago, M.; Paquette, A.; Thiffault, N.; Bélanger, N.; Messier, C. Early performance of planted hybrid larch: Effects of mechanical site preparation and planting depth. New For. 2015, 46, 319–337. [Google Scholar]
- Hébert, F.; Bachand, M.; Thiffault, N.; Paré, D.; Gagné, P. Recovery of plant community functional traits following severe soil perturbation in plantations: A case-study. Int. J. Biodiv. Sci. Ecosyst. Serv. Manag. 2016, 12, 116–127. [Google Scholar] [CrossRef]
- Sutton, R.F. Mounding site preparation: A review of European and North American experience. New For. 1993, 7, 151–192. [Google Scholar] [CrossRef]
- Figueiredo, T.; Fonseca, F.; Martins, A. Soil loss and run-off in young forest stands as affected by site preparation technique: A study in NE Portugal. Eur. J. For. Res. 2011, 131, 1747–1760. [Google Scholar] [CrossRef]
- Truax, B.; Gagnon, D.; Lambert, F.; Fortier, J. Riparian buffer growth and soil nitrate supply are affected by tree species selection and black plastic mulching. Ecol. Eng. 2017, 106, 82–93. [Google Scholar] [CrossRef]
- Saucier, J.P.; Robitaille, A.; Grondin, P. Cadre bioclimatique du Québec. In Manuel de Foresterie, 2nd ed.; Doucet, R., Côté, M., Eds.; Ordre des Ingénieurs Forestiers du Québec, Éditions Multimondes: Québec, QC, Canada, 2009; pp. 186–205. [Google Scholar]
- Environment Canada Canadian Climate Normals 1981–2010 Station Data. Available online: http://climate.weather.gc.ca/climate_normals/index_e.html (accessed on 10 June 2020).
- Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed.; 1646; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 1998; p. 187.
- Jobidon, R. Autécologie de Quelques Espèces deCcompétition d’Importance pour la Régénération Forestière au Québec. Revue de Littérature 117; Ministère des Ressources Naturelles, Direction de la Recherche Forestière: Québec. QC, Canada, 1995; p. 180.
- Réseau Ligniculture Québec. Le Guide de Populiculture au Québec; Réseau Ligniculture Québec: Québec, QC, Canada, 2011; p. 124. [Google Scholar]
- Thomas, R.R.; Sheard, R.W.; Moyer, J.R. Comparison of conventional and automated procedures for nitrogen, phosphorus and potassium, analysis of plant material using a single digestion. Agron. J. 1967, 59, 240–243. [Google Scholar] [CrossRef]
- Carter, M.; Gregorich, E. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1993; p. 1262. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. R Core Team nlme: Linear and Nonlinear Mixed Effects Models R package version 3.1-140. 2019. Available online: https://cran.r-project.org/package=nlme (accessed on 10 June 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.r-project.org/ (accessed on 10 June 2020).
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.5.1. 2019. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 10 June 2020).
- Fraser, E.C.; Landhäusser, S.M.; Lieffers, V.J. The effects of mechanical site preparation and subsequent wildfire on trembling aspen (Populus tremuloides Michx.) regeneration in central Alberta, Canada. New For. 2003, 25, 67–81. [Google Scholar] [CrossRef]
- Simard, M.; Lecomte, N.; Bergeron, Y.; Bernier, P.Y.; Paré, D. Forest productivity decline caused by successional paludification of boreal soils. Ecol. Appl. 2007, 17, 1619–1637. [Google Scholar] [CrossRef]
- Hébert, F.; Boucher, J.-F.; Walsh, D.; Tremblay, P.; Côté, D.; Lord, D. Black spruce growth and survival in boreal open woodlands 10 years following mechanical site preparation and planting. Forestry 2014, 87, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Henneb, M.; Valeria, O.; Thiffault, N.; Fenton, N.J.; Bergeron, Y. Effects of mechanical site preparation on microsite availability and growth of planted black spruce in Canadian paludified forests. Forests 2019, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Sikström, U.; Hökkä, H. Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance. Silva Fenn. 2016, 50, 1416. [Google Scholar] [CrossRef] [Green Version]
- Celma, S.; Blate, K.; Lazdiņa, D.; Dūmiņš, K.; Neimane, S.; Štāls, T.A.; Štikāne, K. Effect of soil preparation method on root development of P. sylvestris and P. abies saplings in commercial forest stands. New For. 2018, 50, 283–290. [Google Scholar] [CrossRef]
- Ryan, D.F.; Huntington, T.G.; Martin, C.W. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods. For. Ecol. Manag. 1992, 49, 87–99. [Google Scholar] [CrossRef]
- Sutinen, R.; Gustavsson, N.; Hänninen, P.; Middleton, M.; Räisänen, M.L. Impact of mechanical site preparation on soil properties at clear-cut Norway spruce sites on mafic rocks of the Lapland Greenstone Belt. Soil Tillage Res. 2019, 186, 52–63. [Google Scholar] [CrossRef]
- Aleksandrowicz-Trzcińska, M.; Drozdowski, S.; Studnicki, M.; Żybura, H. Effects of site preparation methods on the establishment and natural-regeneration traits of scots pines (Pinus sylvestris L.) in northeastern Poland. Forests 2018, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Lteif, A.; Whalen, J.K.; Bradley, R.L.; Camiré, C. Diagnostic tools to evaluate the foliar nutrition and growth of hybrid poplars. Can. J. For. Res. 2008, 38, 2138–2147. [Google Scholar] [CrossRef]
- Thiffault, N.; Jobidon, R. How to shift unproductive Kalmia angustifolia-Rhododendron groenlandicum heath to productive conifer plantation. Can. J. For. Res. 2006, 36, 2364–2376. [Google Scholar] [CrossRef]
- Thiffault, N.; Jobidon, R.; Munson, A.D. Performance and physiology of large containerized and bare-root spruce seedlings in relation to scarification and competition in Québec (Canada). Ann. For. Sci. 2003, 60, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Légaré, S.; Paré, D.; Bergeron, Y. Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil 2005, 275, 207–220. [Google Scholar] [CrossRef]
- Thiffault, N.; Roy, V. Living without herbicides in Québec (Canada): Historical context, current strategy, research and challenges in forest vegetation management. Eur. J. For. Res. 2011, 130, 117–133. [Google Scholar] [CrossRef]
Variable | Mean (SE) | Site Preparation (SP) | Plantation (P) | SP × P | |||
---|---|---|---|---|---|---|---|
F (2,6) a | p-Value b | F (1,9) a | p-Value b | F (2,9) a | p-Value b | ||
Foliar N (g·kg−1) | 12.4 ± 0.7 | 3.2 | 0.112 | – | – | – | – |
Foliar P (g·kg−1) | 2.0 ± 0.2 | 4.7 | 0.058 | – | – | – | – |
Foliar K (g·kg−1) | 15.3 ± 10.3 | 0.0 | 0.993 | – | – | – | – |
Foliar Ca (g·kg−1) | 14.0 ± 2.3 | 2.3 | 0.183 | – | – | – | – |
Foliar Mg (g·kg−1) | 2.2 ± 0.4 | 0.2 | 0.815 | – | – | – | – |
Soil inorganic N (mg·kg−1) | 3.1 ± 0.2 | 2.6 | 0.155 | 3.9 | 0.080 | 2.6 | 0.132 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiffault, N.; Elferjani, R.; Hébert, F.; Paré, D.; Gagné, P. Intensive Mechanical Site Preparation to Establish Short Rotation Hybrid Poplar Plantations—A Case-Study in Québec, Canada. Forests 2020, 11, 785. https://doi.org/10.3390/f11070785
Thiffault N, Elferjani R, Hébert F, Paré D, Gagné P. Intensive Mechanical Site Preparation to Establish Short Rotation Hybrid Poplar Plantations—A Case-Study in Québec, Canada. Forests. 2020; 11(7):785. https://doi.org/10.3390/f11070785
Chicago/Turabian StyleThiffault, Nelson, Raed Elferjani, François Hébert, David Paré, and Pierre Gagné. 2020. "Intensive Mechanical Site Preparation to Establish Short Rotation Hybrid Poplar Plantations—A Case-Study in Québec, Canada" Forests 11, no. 7: 785. https://doi.org/10.3390/f11070785
APA StyleThiffault, N., Elferjani, R., Hébert, F., Paré, D., & Gagné, P. (2020). Intensive Mechanical Site Preparation to Establish Short Rotation Hybrid Poplar Plantations—A Case-Study in Québec, Canada. Forests, 11(7), 785. https://doi.org/10.3390/f11070785