The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions as Compared to the Forest Reference Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Simulations
2.2. Simulation of FMMs in G4M
2.2.1. Changing Tree Species
2.2.2. Selective Logging in a 1-Canopy Layer Virtual Forest
2.2.3. Shelterwood Logging
2.3. Scenarios for Spatial Allocation of Alternative Forest Management Models in G4M
2.3.1. Mapping of Suitable Areas
- Forest area share covered by conifers,;
- Management type, expressed by the area share of high forest (as opposed to coppice);
- Standing wood volume per unit area, expressed in m3 merchantable wood per ha;
- The regions’ potential forest productivity, expressed by the climate-vegetation-productivity (CVP) index by Paterson (1956) [32].
2.3.2. Allocation Scenarios for aFMMs
- Production forestry (aFMMs aimed at wood production, i.e., clearcut and shelterwood logging are prioritized);
- Multifunctional forestry (aFMMs aimed at multifunctional forest use, including selective logging, high production aimed forest management with untouched patches (hereinafter referred to as EU habitats) or with species change are prioritized);
- Balanced forestry (all aFMMs are allowed equally, for trying to achieve a harvest close to the BAU-only case);
- Set-aside forestry (aimed at biodiversity, wilderness, restoration, stand edge management and other nature protection low-intensity management).
2.4. Application of G4M for Estimating the FRL
3. Results
3.1. Spatial Allocation of aFMMs under the Scenarios
3.2. Influence of the aFMMs on the Harvest
3.3. Influence of the aFMMs on Forest Emissions
3.4. The Correlation of the Harvest and Net Forest Sink and Its Implications for the aFMMs
4. Discussion
4.1. Impact of the Introduction of the aFMMs on the Harvest and Net Forest Sink
4.2. aFMM Scenarios Minimizing the Reduction in Harvest and Maximizing the Increase in Sink
4.3. Caveats in This Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Biber, P.; Borges, J.; Moshammer, R.; Barreiro, S.; Botequim, B.; Brodrechtová, Y.; Brukas, V.; Chirici, G.; Cordero-Debets, R.; Corrigan, E.; et al. How Sensitive Are Ecosystem Services in European Forest Landscapes to Silvicultural Treatment? Forests 2015, 6, 1666–1695. [Google Scholar] [CrossRef] [Green Version]
- Agestam, E.; Wallertz, K.; Nilsson, U. Deliverable 1.2-Alternative Forest Management Models for Ten Case Study Areas in Europe; ALTERFOR Project of the European Union’s Horizon 2020 Research and Innovation Programme, Grant Agreement No 676754. 2018. Available online: https://alterfor-project.eu/files/alterfor/download/Results/D1.2._Alternative%20Forest%20Management%20Models%20for%20ten%20Case%20Study%20Areas%20in%20Europe.pdf (accessed on 22 July 2020).
- Nordström, E.-M.; Nieuwenhuis, M.; Başkent, E.Z.; Biber, P.; Black, K.; Borges, J.G.; Bugalho, M.N.; Corradini, G.; Corrigan, E.; Eriksson, L.O.; et al. Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. Eur. J. For. Res. 2019, 138, 561–581. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Fridman, J.; Hengeveld, G.M.; Henttonen, H.M.; Lehtonen, A.; Kies, U.; Krajnc, N.; Lerink, B.; Dhubháin, Á.N.; Polley, H.; et al. Actual European forest management by region, tree species and owner based on 714,000 re-measured trees in national forest inventories. PLoS ONE 2018, 13, e0207151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncker, P.; Barreiro, S.; Hengeveld, G.; Lind, T.; Mason, W.; Ambrozy, S.; Spiecker, H. Classification of Forest Management Approaches: A New Conceptual Framework and Its Applicability to European Forestry. Ecol. Soc. 2012, 17, 4. [Google Scholar] [CrossRef]
- Schwaiger, F.; Poschenrieder, W.; Biber, P.; Pretzsch, H. Ecosystem service trade-offs for adaptive forest management. Ecosyst. Serv. 2019, 39, 100993. [Google Scholar] [CrossRef]
- Levers, C.; Verkerk, P.J.; Müller, D.; Verburg, P.H.; Butsic, V.; Leitão, P.J.; Lindner, M.; Kuemmerle, T. Drivers of forest harvesting intensity patterns in Europe. For. Ecol. Manag. 2014, 315, 160–172. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Verweij, P.; Van Eupen, M.; Pérez-Soba, M.; Pülzl, H.; Hendriks, K. Next-generation information to support a sustainable course for European forests. Nat. Sustain. 2019, 2, 815–818. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Packalen, T. Shifting from even-aged management to less intensive forestry in varying proportions of forest land in Finland: Impacts on carbon storage, harvest removals, and harvesting costs. Eur. J. For. Res. 2019, 138, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.D.; Windmuller-Campione, M.A.; Russell, M.B.; Palik, B.J.; Kastendick, D.N. Short-and Long-Term Results of Alternative Silviculture in Peatland Black Spruce in Minnesota, USA. For. Sci. 2020, 66, 256–265. [Google Scholar] [CrossRef]
- Raymond, P.; Bédard, S.; Roy, V.; Larouche, C.; Tremblay, S. The Irregular Shelterwood System: Review, Classification, and Potential Application to Forests Affected by Partial Disturbances. J. For. 2009, 107, 405–413. [Google Scholar]
- Raymond, P.; Bédard, S. The irregular shelterwood system as an alternative to clearcutting to achieve compositional and structural objectives in temperate mixedwood stands. For. Ecol. Manag. 2017, 398, 91–100. [Google Scholar] [CrossRef]
- Agra, H.; Schowanek, S.; Carmel, Y.; Smith, R.K.; Ne’eman, G. Forest Conservation. In What Works in Conservation; Open Book Publishers: Cambridge, UK, 2019; pp. 331–347. [Google Scholar]
- Tesch, S.D.; Mann, J.W. Clearcut and Shelterwood Reproduction Methods for Regenerating Southwest Oregon Forests; Research bulletin 72; Oregon State University: Corvallis, OR, USA, 1991. [Google Scholar]
- Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry in the 2030 Climate and Energy Framework, and Amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU (Text with EEA relevance). 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.156.01.0001.01.ENG (accessed on 22 July 2020).
- Forsell, N.; Korosuo, A.; Fedeirici, S.; Gusti, M.; Rincón-Cristóbal, J.J.; Ruter, S.; Sánchez-Jiménez, B.; Dore, C.; Brajterman, O.; Gardiner, J. Guidance on Developing and Reporting the Forest Reference Levels in Accordance with Regulation (EU) 2018/841. 2018. ISBN 978-92-79-90398-4. Available online: https://op.europa.eu/en/publication-detail/-/publication/5ef89b70-8fba-11e8-8bc1-01aa75ed71a1/language-en (accessed on 22 July 2020).
- Grassi, G.; Pilli, R.; House, J.; Federici, S.; Kurz, W.A. Science-based approach for credible accounting of mitigation in managed forests. Carbon Balance Manag. 2018, 13, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabuurs, G.-J.; Lindner, M.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 2013, 3, 792–796. [Google Scholar] [CrossRef]
- Forsell, N.; Korosuo, A.; Gusti, M.; Rüter, S.; Havlik, P.; Obersteiner, M. Impact of modelling choices on setting the reference levels for the EU forest carbon sinks: How do different assumptions affect the country-specific forest reference levels? Carbon Balance Manag. 2019, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynynen, J.; Eerikäinen, K.; Mäkinen, H.; Valkonen, S. Growth response to cuttings in Norway spruce stands under even-aged and uneven-aged management. For. Ecol. Manag. 2019, 437, 314–323. [Google Scholar] [CrossRef]
- Eggers, J.; Räty, M.; Öhman, K.; Snäll, T. How Well Do Stakeholder-Defined Forest Management Scenarios Balance Economic and Ecological Forest Values? Forests 2020, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Gusti, M.; Kindermann, G. An approach to modeling landuse change and forest management on a global scale. In Proceedings of the 1st International Conference on Simulation and Modeling Methodologies, Noordwijkerhout, The Netherlands, 29–31 July 2011; pp. 180–185. [Google Scholar]
- Kindermann, G.; Obersteiner, M.; Sohngen, B.; Sathaye, J.; Andrasko, K.; Rametsteiner, E.; Schlamadinger, B.; Wunder, S.; Beach, R. Global cost estimates of reducing carbon emissions through avoided deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 10302–10307. [Google Scholar] [CrossRef] [Green Version]
- Kindermann, G.; Schörghuber, S.; Linkosalo, T.; Sanchez, A.; Rammer, W.; Seidl, R.; Lexer, M.J. Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance Manag. 2013, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Havlík, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Böttcher, H.; Conant, R.T.; et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef] [Green Version]
- Verkerk, P.J.; Levers, C.; Kuemmerle, T.; Lindner, M.; Valbuena, R.; Verburg, P.H.; Zudin, S. Mapping wood production in European forests. For. Ecol. Manag. 2015, 357, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.J.; Gunia, K. Statistical mapping of tree species over Europe. Eur. J. For. Res. 2012, 131, 145–157. [Google Scholar] [CrossRef]
- Böttcher, H.; Verkerk, P.J.; Gusti, M.; HavlÍk, P.; Grassi, G. Projection of the future EU forest CO2 sink as affected by recent bioenergy policies using two advanced forest management models. Glob. Chang. Biol. Bioenergy 2012, 4, 773–783. [Google Scholar] [CrossRef] [Green Version]
- Nomenclature of Territorial Units for Statistics (NUTS) 2013 - Statistical Units - Data set. European Commission, Eurostat (ESTAT), GISCO. 2015. Available online: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts#nuts13 (accessed on 22 July 2020).
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Paterson, S.S. The Forest Area of the World and Its Potential Productivity; Goteburg University Press: Goteburg, Sweden, 1956. [Google Scholar]
- Mahalanobis, P.C. On the Generalised Distance in Statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55. [Google Scholar]
- Cramer, W.; Kicklighter, D.W.; Bondeau, A.; Iii, B.M.; Churkina, G.; Nemry, B.; Ruimy, A.; Schloss, A.L. The Participants of the Potsdam NPP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Glob. Chang. Biol. 1999, 5, 1–15. [Google Scholar] [CrossRef]
- State of Europe’s Forests 2015 Report; Forest Europe. 2015. Available online: https://foresteurope.org/state-europes-forests-2015-report/ (accessed on 22 July 2020).
- Di Fulvio, F.; Forsell, N.; Lindroos, O.; Korosuo, A.; Gusti, M. Spatially explicit assessment of roundwood and logging residues availability and costs for the EU28. Scand. J. For. Res. 2016, 31, 691–707. [Google Scholar] [CrossRef] [Green Version]
- Kindermann, G.; McCallum, I.; Fritz, S.; Obersteiner, M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn. 2008, 42(3), 387–396. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T. Does management improve the carbon balance of forestry? Forestry 2017, 90, 125–135. [Google Scholar] [CrossRef]
- Gustafsson, L.; Baker, S.C.; Bauhus, J.; Beese, W.J.; Brodie, A.; Kouki, J.; Lindenmayer, D.B.; Lõhmus, A.; Pastur, G.M.; Messier, C.; et al. Retention Forestry to Maintain Multifunctional Forests: A World Perspective. BioScience 2012, 62, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Schier, F.; Morland, C.; Janzen, N.; Weimar, H. Impacts of changing coniferous and non-coniferous wood supply on forest product markets: A German scenario case study. Eur. J. For. Res. 2018, 137, 279–300. [Google Scholar] [CrossRef]
- Capros, P.; De Vita, A.; Tasios, N.; Siskos, P.; Kannavou, M.; Petropoulos, A.; Evangelopoulou, S.; Zampara, M.; Papadopoulos, D.; Nakos, C.; et al. EU Reference Scenario 2016-Energy, Transport and GHG Emissions Trends to 2050; Publications Office of the European Union: Luxembourg, 2016.
Country/CSA | NUTS2 * | aFMM Characteristics | aFMM Highlights for G4M Modelling | aFMM Group |
---|---|---|---|---|
Germany/Brandenburg | DE30-DE40 | Scots pine timber and energy forest | Shelterwood, short rotation from 60 years; pine | shelterwood |
Biodiversity centered management of pine | Selective logging; change species from pine to oak | selective logging species change | ||
Oak biodiversity set-aside | No use; for oak | set-aside | ||
Germany/Bavaria | DE21-22-23-24-25-26-27 | Norway spruce timber and energy forest | Shelterwood; for spruce; short rotation from 60–70 years | shelterwood |
Biodiversity centered management of spruce | Selective logging (diameter at breast height (Dbh): 40–45/60 cm); species change from spruce to beech | selective logging species change | ||
Beech biodiversity set-aside | No use; for beech | set-aside | ||
Ireland | IE01-IE02 | Lodgepole pine fiber | Clearcut; for pine; rotation: 65–80 years | clearcut |
Lodgepole pine wilderness | No use; pine | set-aside | ||
Sitka spruce under birch nurse, on blanket bog | Clearcut; spruce; rotation from 40 years | clearcut | ||
Bog restoration | No use; | set-aside | ||
Lodgepole pine—Nephin | No use; pine | set-aside | ||
Italy | IT32 | Recreational selective | Selective | selective logging |
Uniform shelterwood and coppice | Shelterwood and coppice; rotation of 80–100 years for shelterwood and 35 years for coppice | shelterwood | ||
Lithuania | LT00 | Adaptive rotation | Normal clearcut; coniferous | clearcut |
Care for broadleaves | Normal clearcut; change species from coniferous to deciduous and vice versa, stop the change when half-half | clearcut species change | ||
Potential EU habitats | Clearcut with untouched patches | EU habitats | ||
The Netherlands | NL11-12-13-21-22-23-31-32-33-34-41-42 | Wood mass forest | Clearcut; rotation: 20–30 years for very productive forests | clearcut |
High value timber | Shelterwood; Dbh: 45–60 cm | shelterwood | ||
Park management | Selective | selective logging | ||
Climate resilient management | Selective | selective logging | ||
Portugal | PT11 ** | Pure maritime pine | Clearcut; pine halepensis; rotation: 40–60 years | clearcut |
Pure oak forest sawlog | Clearcut; oak; rotation: 40–60 years | clearcut | ||
Oak for cork production | Selective | selective logging | ||
Slovakia | SK01-02-03-04 | Even aged mixed | Shelterwood; rotation: 90 years; change species: from deciduous to coniferous/from coniferous to deciduous, stop the change when half–half | shelterwood species change |
Uneven aged mixed | Shelterwood; regeneration period up to 60 years; change species: from deciduous to coniferous/from coniferous to deciduous, stop the change when half–half | shelterwood species change | ||
Sweden | SE09 | Sitka/Douglas | Clearcut; spruce or fir; rotation: 40–70 years | clearcut |
Spruce/pine/birch mixture | Clearcut; spruce, pine or birch; rotation: 40–70 years | clearcut | ||
Selection | Selective; spruce | selective logging | ||
Stand edge management | No use | set-aside | ||
Turkey | Continuous cover forestry | Selective; beech | selective logging |
Region | Countries | Number of Grid Cells Considered in the Regions | Forest Area Considered in the Regions, kha |
---|---|---|---|
Central-East | Bulgaria, Czech Republic, Hungary, Poland, Romania, Slovakia | 357 | 21,579 |
Central-West | Austria, Belgium, France, Germany, Ireland, Luxembourg, The Netherlands, The United Kingdom | 653 | 33,236 |
Northern | Denmark, Estonia, Finland, Latvia, Lithuania, Sweden | 556 | 50,801 |
Southern | Croatia, Cyprus, Greece, Italy, Malta, Portugal, Slovenia, Spain, Turkey | 460 | 37,921 |
Scenario | Region | BAU | Clearcut | Clearcut sc | Shelterwood | Shelterwood sc | Selective | Selective Sc | EU Habitats | Set-Aside |
---|---|---|---|---|---|---|---|---|---|---|
Set-Aside | Central-East | 37.80% | 1.20% | 13.30% | 1.30% | 8.60% | 6.60% | 5.30% | 25.70% | 0.10% |
Central-West | 60.80% | 4.80% | 0.00% | 1.30% | 0.90% | 11.50% | 15.70% | 3.50% | 1.50% | |
Northern | 56.50% | 1.20% | 3.40% | 0.00% | 0.00% | 16.80% | 0.00% | 7.30% | 14.80% | |
Southern | 60.20% | 2.70% | 0.00% | 6.60% | 0.00% | 14.70% | 0.00% | 11.70% | 4.10% | |
All regions | 55.70% | 2.40% | 3.20% | 2.20% | 1.50% | 13.50% | 4.40% | 10.30% | 6.70% | |
Multifunction | Central-East | 38.00% | 1.20% | 13.30% | 1.30% | 8.60% | 6.60% | 5.30% | 25.70% | 0.00% |
Central-West | 62.70% | 4.90% | 0.00% | 1.40% | 0.90% | 10.90% | 15.70% | 3.50% | 0.00% | |
Northern | 66.30% | 2.00% | 3.40% | 0.00% | 0.00% | 16.80% | 0.00% | 7.30% | 4.20% | |
Southern | 63.80% | 2.70% | 0.00% | 6.60% | 0.00% | 14.20% | 0.00% | 11.70% | 1.10% | |
All regions | 60.60% | 2.80% | 3.20% | 2.20% | 1.50% | 13.20% | 4.40% | 10.30% | 1.70% | |
Balanced | Central-East | 38.00% | 21.70% | 16.10% | 6.90% | 8.60% | 3.50% | 2.80% | 2.40% | 0.00% |
Central-West | 63.70% | 4.90% | 0.80% | 9.60% | 0.90% | 9.60% | 7.80% | 2.70% | 0.00% | |
Northern | 70.50% | 7.00% | 2.10% | 0.00% | 0.00% | 16.80% | 0.00% | 3.50% | 0.00% | |
Southern | 63.80% | 11.70% | 0.90% | 10.90% | 0.00% | 9.90% | 0.00% | 1.70% | 1.10% | |
All regions | 62.30% | 10.00% | 3.60% | 6.10% | 1.50% | 11.30% | 2.20% | 2.70% | 0.30% | |
Production | Central-East | 38.00% | 21.70% | 16.10% | 9.70% | 8.60% | 3.50% | 0.00% | 2.40% | 0.00% |
Central-West | 64.20% | 4.90% | 0.80% | 14.20% | 0.90% | 9.10% | 3.20% | 2.70% | 0.00% | |
Northern | 79.80% | 7.00% | 2.10% | 0.00% | 0.00% | 7.50% | 0.00% | 3.50% | 0.00% | |
Southern | 65.20% | 11.70% | 0.90% | 10.90% | 0.00% | 9.50% | 0.00% | 1.70% | 0.00% | |
All regions | 66.00% | 10.00% | 3.60% | 7.60% | 1.50% | 7.80% | 0.70% | 2.70% | 0.00% |
Period | Region | ||||
---|---|---|---|---|---|
Central-East | Central-West | Northern | Southern | All Regions | |
Roundwood Harvest (Thousand m3/Year) * | |||||
Reference 2000–2009 | 91,801 | 160,786 | 172,221 | 67,373 | 492,181 |
CP1 2021–2025 | 102,942 | 165,668 | 185,365 | 68,135 | 522,110 |
CP2 2026–2030 | 105,888 | 171,835 | 182,505 | 69,917 | 530,145 |
Net Forest Emissions (Mt CO2/Year) ** | |||||
Reference 2000–2009 | −83 | −127 | −94 | −140 | −445 |
CP1 2021–2025 | −60 | −126 | −76 | −127 | −388 |
CP2 2026–2030 | −54 | −117 | −77 | −119 | −366 |
Period | Scenario | |||||||
---|---|---|---|---|---|---|---|---|
Prod 2020 | Prod 2020–2030 | Balanced 2020 | Balanced 2020–2030 | Multi 2020 | Multi 2020–2030 | Set-Aside 2020 | Set-Aside 2020–2030 | |
Central-East | ||||||||
CP1 harvest | 167 | 149 | 155 | 66 | −52 | −374 | −96 | −375 |
CP1 emissions | −9 | −6 | −11 | −7 | −17 | −12 | −17 | −12 |
CP2 harvest | 321 | 87 | 220 | −28 | 326 | 156 | 343 | 158 |
CP2 emissions | −8 | −6 | −10 | −8 | −16 | −13 | −16 | −13 |
Central-West | ||||||||
CP1 harvest | −820 | −638 | −854 | −572 | −1045 | −704 | −1335 | −871 |
CP1 emissions | −9 | −8 | −19 | −12 | −35 | −23 | −37 | −24 |
CP2 harvest | −443 | −709 | −476 | −684 | −811 | −1042 | −1495 | −1261 |
CP2 emissions | −8 | −9 | −20 | −17 | −39 | −33 | −41 | −34 |
Northern | ||||||||
CP1 harvest | −2086 | −1324 | −2622 | −2633 | −2569 | −2593 | −3550 | −2766 |
CP1 emissions | −9 | −3 | −16 | −6 | −20 | −9 | −19 | −9 |
CP2 harvest | 271 | −763 | 229 | −1560 | 314 | −1737 | 37 | −3645 |
CP2 emissions | −8 | −5 | −14 | −7 | −18 | −10 | −15 | −12 |
Southern | ||||||||
CP1 harvest | −770 | −732 | −727 | −722 | −711 | −640 | −717 | −669 |
CP1 emissions | −4 | −3 | −4 | −3 | −5 | −3 | −5 | −3 |
CP2 harvest | −491 | −427 | −508 | −503 | −408 | −238 | −373 | −123 |
CP2 | −5 | −3 | −5 | −3 | −6 | −4 | −6 | −4 |
All Regions | ||||||||
CP1 harvest | −3510 | −2545 | −4048 | −3860 | −4376 | −4310 | −5697 | −4682 |
CP1 emissions | −31 | −19 | −49 | −28 | −77 | −47 | −78 | −48 |
CP2 harvest | −343 | −1811 | −535 | −2774 | −579 | −2861 | −1489 | −4870 |
CP2 emissions | −29 | −23 | −49 | −36 | −79 | −60 | −78 | −62 |
Item | Scenario | |||||||
---|---|---|---|---|---|---|---|---|
Prod 2020 | Prod 2020–2030 | Balanced 2020 | Balanced 2020–2030 | Multi 2020 | Multi 2020–2030 | Set-Aside 2020 | Set-Aside 2020–2030 | |
Central-East | ||||||||
r | 0.02 | 0.56 | 0.20 | 0.40 | −0.25 | −0.09 | −0.21 | −0.08 |
r2 | 0.00 | 0.32 | 0.04 | 0.16 | 0.06 | 0.01 | 0.05 | 0.01 |
p | 0.945 | 0.071 | 0.565 | 0.217 | 0.457 | 0.799 | 0.526 | 0.824 |
Central-West | ||||||||
r | 0.80 | 0.22 | 0.48 | 0.17 | −0.17 | 0.70 | −0.17 | 0.56 |
r2 | 0.63 | 0.05 | 0.23 | 0.03 | 0.03 | 0.49 | 0.03 | 0.31 |
p | 0.003 | 0.525 | 0.133 | 0.627 | 0.611 | 0.017 | 0.618 | 0.072 |
Northern | ||||||||
r | 0.40 | −0.43 | 0.32 | −0.70 | 0.44 | −0.55 | 0.98 | 0.93 |
r2 | 0.16 | 0.18 | 0.10 | 0.49 | 0.19 | 0.30 | 0.95 | 0.86 |
p | 0.218 | 0.189 | 0.331 | 0.016 | 0.180 | 0.080 | 0.000 | 0.000 |
Southern | ||||||||
r | 0.97 | −0.08 | 0.97 | 0.16 | 0.83 | −0.12 | 0.80 | −0.01 |
r2 | 0.95 | 0.01 | 0.95 | 0.03 | 0.69 | 0.01 | 0.64 | 0.00 |
p | 0.000 | 0.826 | 0.000 | 0.634 | 0.002 | 0.721 | 0.003 | 0.966 |
All Regions | ||||||||
r | 0.67 | −0.76 | 0.39 | −0.76 | −0.53 | −0.90 | −0.35 | 0.36 |
r2 | 0.45 | 0.58 | 0.16 | 0.57 | 0.28 | 0.82 | 0.12 | 0.13 |
p | 0.024 | 0.006 | 0.230 | 0.007 | 0.091 | 0.000 | 0.294 | 0.278 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusti, M.; Di Fulvio, F.; Biber, P.; Korosuo, A.; Forsell, N. The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions as Compared to the Forest Reference Level. Forests 2020, 11, 794. https://doi.org/10.3390/f11080794
Gusti M, Di Fulvio F, Biber P, Korosuo A, Forsell N. The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions as Compared to the Forest Reference Level. Forests. 2020; 11(8):794. https://doi.org/10.3390/f11080794
Chicago/Turabian StyleGusti, Mykola, Fulvio Di Fulvio, Peter Biber, Anu Korosuo, and Nicklas Forsell. 2020. "The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions as Compared to the Forest Reference Level" Forests 11, no. 8: 794. https://doi.org/10.3390/f11080794
APA StyleGusti, M., Di Fulvio, F., Biber, P., Korosuo, A., & Forsell, N. (2020). The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions as Compared to the Forest Reference Level. Forests, 11(8), 794. https://doi.org/10.3390/f11080794