Site Classification of Eucalyptus urophylla × Eucalyptus grandis Plantations in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Data Compilation
× rn + rn2)/3 (n > 2)
2.3. Sample Soil Analysis
2.4. Data Analysis
3. Results
3.1. Determination of the Base Age
3.2. Formulating a Quantitative Regression Model
3.3. Site Classification and Evaluation
3.4. Relationship between the Growth of E. urophylla × E. grandis and Soil Chemical Properties
4. Discussion
4.1. Differences between Site Types of E. urophylla × E. grandis in Southern Yunnan and Other Regions
4.2. Main Impact Factors on Site Types of E. urophylla × E. grandis in Southern Yunnan
4.3. Physical and Chemical Properties of Soil and Productivity
4.4. Implications and Recommendations for Forest Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, M.; Peng, Y. Current status and development trend of eucalyptus pulp in China. Pap. Papermak. 2006, 25, 17–20. [Google Scholar]
- Qi, S. Chinese Eucalyptus; China Forest Press: Beijing, China, 2002; p. 5. [Google Scholar]
- Zhang, J. China Forest Resources Report (2014–2018); China Forest Press: Beijing, China, 2019; pp. 9–15. [Google Scholar]
- Jin, G.; Li, Z.; Lin, Q.; Shi, C.; Liu, B.; Yao, L. Land use suitability assessment in low-slope hilly regions under the impact of urbanization in Yunnan, China. Adv. Meteorol. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Dang, K.; Tian, X.; Sun, S.; Chen, S.; Zhao, P.; Cao, T. Evaluating site quality for secondary forests and plantation in Qinling mountains. Sci. Silva. Sin. 2015, 51, 78–88. [Google Scholar]
- Uzoh, F.C.C.; Oliver, W.W. Individual tree diameter increment model for managed even-aged stands of Ponderosa pine throughout the western United States using a multilevel linear mixed effects model. For. Ecol. Manag. 2008, 256, 438–445. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Y. Determination of site and nutrient productivity parameters for eucalyptus forest. Sci. Silva. Sin. 2003, 39, 71–77. [Google Scholar]
- Lai, T.; Zhang, J.; Feng, M.; Xie, X. Eucalyptus grandis site type classification of major introduction districts in Sichuan. J. Sichuan Agric. Univ. 2005, 23, 318–322. [Google Scholar]
- Grant, J.C.; Nichols, J.D.; Smith, R.G.B.; Brennan, P.; Vanclay, J.K. Site index prediction of Eucalyptus dunnii Maiden plantations with soil and site parameters in sub-tropical eastern Australia. Aust. For. 2010, 7, 234–245. [Google Scholar] [CrossRef]
- Meng, X. Forest Mensutation, 3rd ed.; China Forest Press: Beijing, China, 2006; p. 107. [Google Scholar]
- Hayashi, C. On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view. Ann. Inst. Stat. Math. 1951, 3, 69–98. [Google Scholar] [CrossRef]
- Sun, T.; Cu, X.; Pan, S. Determination of hydrogeological point parameters based on quantification theory I. J. Earth Sci. Environ. 2007, 29, 285–288. [Google Scholar]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Wang, J.; Weng, Y.; Chen, X.; Wu, L. Soil characteristics of Eucalyptus urophylla × Eucalyptus grandis plantations under different management measures for harvest residues with soil depth gradient across time. Ecol. Indic. 2020, 117, 1–12. [Google Scholar] [CrossRef]
- Lu, R. Soil Argrochemistry Analysis Protocoes; China Agriculture Science Press: Beijing, China, 1999; pp. 125–136. [Google Scholar]
- Zhang, H. Research and Evaluation on Wind-Resistance of Main Tree Species in Leizhou Peninsula; Chinese Academy of Forestry: Beijing, China, 2010; pp. 16–19. [Google Scholar]
- Zhen, M.; Chen, Y. Study on the site index model of eucalyptus short-rotation industrial raw material forest. For. Res. 2008, 21, 415–418. [Google Scholar]
- Sheng, W. On the maintenance of long-term productivity of plantation in China. For. Res. 2018, 31, 1–14. [Google Scholar]
- Yu, X.; Xu, D.; Long, T.; Mo, X. Study on biomass and productivity structure of continuous Eucalyptus plantation. J. South China Univ. Trop. Agric. 1999, 5, 10–17. [Google Scholar]
- Shang, X. Study on Wind Resistance Characteristics and Association Analysis of Important Traits in Eucalyptus Camaldulensis; Chinese Academy of Forestry: Beijing, China, 2017; pp. 5–7. [Google Scholar]
- Zhang, R.; Li, S.; Jiang, Y. The introduction history, current development and the future of eucalyptus in Yunnan Province. Eucalypt Sci. Technol. 2007, 24, 18–23. [Google Scholar]
- Xue, B.; Hu, D. Selection of elite Eucalypt clones and it’s pulp and papermaking properties in high altitude area of Southern Yunnan. Eucalypt Sci. Technol. 2007, 24, 1–6. [Google Scholar]
- Louw, J.; Scholes, M. Forest site classification and evaluation:A South African perspective. For. Ecol. Manag. 2002, 171, 153–168. [Google Scholar] [CrossRef]
- Tang, C.; Wang, C.; Pang, S.; Jia, H.; Zeng, J. Site classification and evaluation of Betula alnoides plantations at Guangxi Daqing mountain. J. Northwest For. Univ. 2018, 33, 52–57. [Google Scholar]
- Du, J.; Liang, K.; Zhou, Z.; Huang, G.; Li, B.; Ma, H. Site classification and evaluation of teak plantation in Xishuangbanna, Yunnan province, China. Sci. Silva. Sin. 2016, 52, 1–10. [Google Scholar]
- Wei, J.; Hou, M.; Wei, T.; Ou, J. Comparison on Eucalyptus plantation growth and soil physicochemical properties in different slope position. J. Anhui Agric. Sci. 2017, 45, 167–169. [Google Scholar]
- Liu, C. Multivariate statistical analysis techniques applicated in differentiation of soil fertility. Acta Ecol. Sin. 1996, 16, 445–447. [Google Scholar]
- Shen, S. Effects of site conditions on the growth and management efficiency of Eucalyptus urophylla. Anhui Agric. Sci. Bull. 2008, 14, 169–171. [Google Scholar]
- Liu, X.; Su, J.; Shi, L. Relation between growth increments of Pinus kesiya var. langbianensis and site condition. Chin. Agric. Sci. Bull. 2010, 26, 142–145. [Google Scholar]
- Asner, G.P.; Flint, H.R.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 2009, 12, 261–278. [Google Scholar] [CrossRef]
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For. Ecol. Manag. 2010, 260, 679–691. [Google Scholar] [CrossRef]
- Wan, X.; Zhang, H.; Wang, C.; Ding, Y. Effects of nitrogen supplement on photosynthetic characteristic and growth rate of Eucalyptus grandis under three kind of heavy metal stress. J. Nucl. Agric. Sci. 2012, 26, 1087–1093. [Google Scholar]
- Pan, R.; Wang, X.; Li, N. Plant Physiology; Higher Education Press: Beijing, China, 2012; pp. 33–64. [Google Scholar]
- Close, D.C.; Mcarthur, C.; Hagerman, A.E. Differential distribution of leaf chemistry in Eucalypt seedlings due to variation in whole-plant nutrient availability. Phytochemistry 2005, 66, 215–221. [Google Scholar] [CrossRef]
- Williamson, J.R.; Neilsen, W.A. The effect of soil compaction, profile disturbance and fertilizer application on the growth of Eucalypt seedlings in two glasshouse studies. Soil Till. Res. 2003, 71, 95–107. [Google Scholar] [CrossRef]
- Li, S.; Xu, S.; Liao, X.; Lang, P. Functions of micro-elements in Eucalyptus. J. Beijing For. Univ. 2003, 2, 94–97. [Google Scholar]
- Gong, M.; Gu, M.; Chen, P. Diseases and Pests of Eucalyptus in China and Their Control; Guangdong Science and Technology Press: Guangzhou, China, 2007; pp. 37–45. [Google Scholar]
- Liao, G.; Lin, S.; Li, S. Causes and control measures of soil degradation of Eucalyptus plantation in Leizhou Peninsula. Soil Environ. Sci. 2002, 11, 268–273. [Google Scholar]
- Zhang, Y.; Wang, H.; Li, N. Preliminary analysis of common physiological deficiencies in Eucalyptus. Guangxi For. Sci. 2009, 38, 123–124. [Google Scholar]
- Ma, T.; Zhu, K. Soil Types in China; China Agriculture Press: Guangzhou, China, 1996; pp. 17–21. [Google Scholar]
- Xu, D.; Zhang, N. Research progress on ecological effects of Eucalypts plantations. Guangxi For. Sci. 2006, 35, 179–187. [Google Scholar]
- McMahon, D.E.; Vergütz, L.; Valadares, S.V.; Da Silva, I.R.; Jackson, R.B. Soil nutrient stocks are maintained over multiple rotations in Brazilian Eucalyptus plantations. For. Ecol. Manag. 2019, 448, 364–375. [Google Scholar] [CrossRef]
- Stape, J.L.; Binkley, D.; Ryan, M.G.; Fonseca, S.; Loos, R.A.; Takahashi, E.N.; Azevedo, M.R. The Brazil Eucalyptus potential productivity project: Influence of water, nutrients and stand uniformity on wood production. For. Ecol. Manag. 2010, 259, 1684–1694. [Google Scholar] [CrossRef]
- Christina, M.; Le, M.G.; Battie, L.P.; Nouvellon, Y.; Bouillet, J.P.; Jourdan, C.; Moraes, G.J.; Laclau, J.P. Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations. Glob. Chang. Biol. 2015, 21, 2022–2039. [Google Scholar] [CrossRef]
- Da Silva, R.M.L.; Hakamada, R.E.; Bazani, J.H.; Otto, M.S.G.; Stape, J.L. Fertilization response, light use, and growth efficiency in Eucalyptus plantations across soil and climate gradients in Brazil. Forests 2016, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Moilanen, M.; Saarsalmi, A.; Kukkola, M.; Issakainen, J. Effects of stabilized wood ash on nutrient status and growth of Scots pine—Comparison between uplands and peatlands. For. Ecol. Manag. 2013, 295, 136–144. [Google Scholar] [CrossRef]
- Fan, W.; Gao, R.; Guo, L.; Yang, H.; Qu, J. A study on influence of fertilization on the soil nutrient and soil environment for artificial poplar forests. Sci. Silva. Sin. 1999, 35, 103–107. [Google Scholar]
- Montoro, G.M.; Morin, H.; Lussier, J.M.; Walsh, D. Radial growth response of black spruce stands ten years after experimental shelterwoods and seed-tree cuttings in boreal forest. Forests. 2016, 7, 240. [Google Scholar] [CrossRef] [Green Version]
- Montoro, G.M.; Morin, H.; Lussier, J.M.; Ruel, J.C. Post-cutting mortality following experimental silvicultural treatments in unmanaged boreal forest stands. Front. For. Glob. Chang. 2019, 2, 4. [Google Scholar] [CrossRef] [Green Version]
Item | Category | ||||
---|---|---|---|---|---|
Altitude (m) X1 | <1000 | 1000−1200 | 1200−1400 | 1400−1600 | 1600−1800 |
Slope (°) X2 | Conservative slope 0−5 | Gentle slope 6−15 | Incline slope 16−25 | Steep slope >25 | |
Slope position X3 | Upper slope | Middle slope | Lower slope | Flat ground | |
Soil depth (cm) X4 | Thin: <40 | Medium: 40−80 | Thick: >80 | ||
Slope aspect X5 | Sunny slope | Half-sunny slope | Half-shady slope | Shady slope | Flat slope |
Texture X6 | Sandy loam | Light loam | Middle loam | Heavy loam | |
Bulk density (g·cm−3) X7 | >1.4 | 1.2−1.4 | 1.0−1.2 | <1.0 | |
Litter thickness (cm) X8 | Thin: <5.0 | Medium: 5.0−10.0 | Thick: >10.0 |
Age Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SD of height | 1.71 | 2.24 | 2.43 | 2.67 | 2.09 | 2.34 | 2.39 | 2.43 | 2.48 | 2.52 | 2.59 | 2.61 | 2.66 | 2.68 | 2.70 |
Average height/m | 6.4f | 10.6e | 14.6d | 17.7c | 21.1b | 23.8a | 24.2a | 24.6a | 25.1a | 25.5a | 26.1a | 26.5a | 26.8a | 27.1a | 27.5a |
CV of height/% | 26.72 | 21.13 | 16.64 | 15.08 | 9.91 | 9.83 | 9.87 | 9.92 | 9.88 | 9.96 | 9.92 | 9.85 | 9.93 | 9.89 | 9.82 |
Item | Category | Code | Score | Score Range and Proportion | Coefficient of Partial Correlation |
---|---|---|---|---|---|
Constant | 27.669 | ||||
Altitude (m) X1 | <1000 | X11 | 0 | 3.455 (21.07%) | 0.362 ** |
1000−1200 | X12 | −1.513 | |||
1200−1400 | X13 | −2.170 | |||
1400−1600 | X14 | −2.827 | |||
1600−1800 | X15 | −3.455 | |||
Slope X2 | Conservative Slope | X21 | 1.421 | 2.392 (14.59%) | 0.165 * |
Gentle slope | X22 | 0.677 | |||
Incline slope | X23 | 0 | |||
Steep slope | X24 | −0.971 | |||
Slope position X3 | Flat ground | X31 | −1.672 | 3.713 (22.65%) | 0.437 ** |
Upper slope | X32 | 0 | |||
Middle slope | X33 | 0.856 | |||
Lower slope | X34 | 2.041 | |||
Soil depth (cm) X4 | Thin: <40 | X41 | −1.189 | 2.704 (16.49%) | 0.232 * |
Medium: 40−80 | X42 | 0 | |||
Thick: >80 | X43 | 1.515 | |||
Slope aspect X5 | Sunny slope | X51 | −1.179 | 1.729 (10.55%) | 0.184 * |
Half-sunny slope | X52 | 0 | |||
Half-shady slope | X53 | 0.141 | |||
Shady slope | X54 | 0.550 | |||
Flat slope | X55 | 0 | |||
Texture X6 | Sandy loam | X61 | −0.009 | 0.671 (4.09%) | 0.279 * |
Light loam | X62 | 0.608 | |||
Middle loam | X63 | 0 | |||
Heavy loam | X64 | −0.063 | |||
Soil bulk density (g·cm−3) X7 | >1.4 | X71 | −2.231 | 2.231 (13.79%) | 0.307 * |
1.2−1.4 | X72 | −2.153 | |||
1.0−1.2 | X73 | −2.084 | |||
<1.0 | X74 | −2.053 | |||
Litter thickness (cm) X8 | Thin: <5.0 | X81 | −1.135 | 1.863 (11.36%) | 0.232 * |
Medium: 5.0−10.0 | X82 | 0 | |||
Thick: >10.0 | X83 | 0.728 |
Basis of Classification | Site Type | Dominant Height/m | Range of Change/m | ||
---|---|---|---|---|---|
Slope Position | Altitude/m | Soil Depth/cm | |||
Upper slope | 1000−1200 | >40 | Upper slope, medium-low altitude, medium-thick soil | 24.2 | 21.9−25.3 |
1000−1200 | <40 | Upper slope, medium-low altitude, Thin soil | 19.2 | 18.5−21.7 | |
1200−1400 | * | Upper slope, medium altitude, total soil thickness | 23.6 | 21.9−25.3 | |
1400−1800 | * | Upper slope, medium-high altitude, total soil thickness | 21.5 | 15.8−23.4 | |
Middle slope | 1000−1200 | >40 | Middle slope, medium-low altitude, medium-thick soil | 22.9 | 19.5−24.5 |
1000−1200 | <40 | Middle slope, medium-low altitude, Thin soil | 18.5 | 18.1−18.9 | |
1200−1400 | >40 | Middle slope, medium altitude, medium-thick soil | 22.4 | 20.5−25.4 | |
1400−1800 | >40 | Middle slope, medium-high altitude, medium-thick soil | 21.8 | 20.8−23.0 | |
Lower slope | 900−1000 | >40 | Lower slope, low altitude, medium-thick soil | 25.4 | 24.5−26.2 |
1000−1200 | >80 | Lower slope, medium-low altitude, thick soil | 24.8 | 23.2−25.5 | |
1200−1400 | >40 | Lower slope, medium altitude, medium-thick soil | 21.1 | 20.1−22.3 | |
1400−1600 | 40−80 | Lower slope, medium-high altitude, medium soil | 19.5 | 19.0−20.0 | |
Flat slope | 1400−1600 | 40−80 | Flat slope, medium-high altitude, medium soil | 20.1 | 19.8−24.5 |
Site Productivity Groups | Site Type | Dominant Height Predicted/m | Dominant Height Measured/m | |
---|---|---|---|---|
High-yield group I | I 1 | Lower slope, 900−1000 m, thick soil | 25.6 | 25.4 |
I 2 | Lower slope, 1000−1200 m, thick soil | 25.2 | 24.8 | |
I 3 | Upper slope, 1000−1200 m, medium-thick soil | 24.7 | 24.2 | |
Middle- yield group II | II1 | Upper slope, 1200−1400 m, total soil depth | 24.1 | 23.6 |
II2 | Middle slope, 1000−1200 m, medium-thick soil | 23.5 | 22.9 | |
II3 | Middle slope, 1200−1400 m, medium-thick soil | 22.7 | 22.4 | |
II4 | Middle slope, 1400−1800 m, medium-thick soil | 22.2 | 21.8 | |
II5 | Upper slope, 1400−1800 m, total soil depth | 21.4 | 21.5 | |
II6 | Lower slope, 1200−1400 m, medium-thick soil | 20.9 | 21.1 | |
Low-yield group III | III1 | Flat ground, 1400−1600 m, medium soil | 20.4 | 20.1 |
III2 | Lower slope, 1400−1600m, medium soil | 19.3 | 19.5 | |
III3 | Upper slope, 1000−1200 m, thin soil | 18.9 | 19.2 | |
III4 | Middle slope, 1000−1200 m, thin soil | 18.3 | 18.5 |
Item | Axis 1 | Axis 2 | Axis 3 | Axis 4 | |
---|---|---|---|---|---|
Eigenvalues | 0.511 | 0.035 | 0.004 | 0.000 | |
Correlation of trait-soil factors | 0.872 | 0.548 | 0.533 | 0.475 | |
Cumulative variation of trait /% | 71.3 | 73.7 | 74.1 | 74.2 | |
Sum of all eigenvalues | 1 | ||||
Sum of canonical eigenvalues | 0.551 | ||||
Permutation test on first axis (F test) | F = 28.65 | p = 0.002 | |||
Permutation test on all axis (F test) | F = 7.832 | p = 0.002 |
Soil Chemical Property | Level | ||||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | ||
Organic matter | g/kg | >40 | 30−40 | 20−30 | 10−20 | 6−10 | <6 |
Total N | g/kg | >2.0 | 1.5−2 | 1−1.5 | 0.75−1 | 0.5−0.75 | <0.5 |
Available P | mg/kg | >40 | 20−40 | 10−20 | 5−10 | 3−5 | <3 |
Available K | mg/kg | >200 | 150−200 | 100−150 | 50−100 | 30−50 | <30 |
B | mg/kg | >2.0 | 1.0−2.0 | 0.5−1.0 | 0.2−0.5 | <0.2 | |
Zn | mg/kg | >3.0 | 1.0−3.0 | 0.5−1.0 | 0.3−0.5 | <0.3 | |
Cu | mg/kg | >1.8 | 1.0−1.8 | 0.2−1.0 | 0.1−0.2 | <0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Xu, J.; Li, G.; Liu, W. Site Classification of Eucalyptus urophylla × Eucalyptus grandis Plantations in China. Forests 2020, 11, 871. https://doi.org/10.3390/f11080871
Lu H, Xu J, Li G, Liu W. Site Classification of Eucalyptus urophylla × Eucalyptus grandis Plantations in China. Forests. 2020; 11(8):871. https://doi.org/10.3390/f11080871
Chicago/Turabian StyleLu, Haifei, Jianmin Xu, Guangyou Li, and Wangshu Liu. 2020. "Site Classification of Eucalyptus urophylla × Eucalyptus grandis Plantations in China" Forests 11, no. 8: 871. https://doi.org/10.3390/f11080871