A 13-Year Approach to Understand the Effect of Prescribed Fires and Livestock Grazing on Soil Chemical Properties in Tivissa, NE Iberian Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Soil Sampling and Laboratory Analysis
2.2.2. Data Treatment
3. Results
4. Discussion
4.1. pH and Electrical Conductivity
4.2. Carbon (C) Stocks and Nitrogen (N)
4.3. Nutrient Availability
4.4. Soil Quality after Fire and Livestock Grazing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin? –A review. Int. J. Wildland Fire 2008, 17, 713–723. [Google Scholar] [CrossRef]
- Pausas, J.F. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Moreira, F.; Rego, F.C.; Ferreira, P.G. Temporal (1958–1995) pattern of change in cultural landscape of north-western Portugal: Implications for fire occurrence. Landsc. Ecol. 2001, 16, 557–567. [Google Scholar] [CrossRef]
- Faerber, J. Forest fires in Catalonia: From risk assessment to fire management. Sud-Ouest Eur. 2009, 28, 77–90. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Borja, M.E.; Úbeda, X.; Martínez-Murillo, J.F.; Keesstra, S.; Pinus Halepensis, M. versus Quercus ilex subsp. Rotundifolia, L. runoff and soil erosion at pedon scale under natural rainfall in Eastern Spain three decades after a forest fire. For. Ecol. Manag. 2017, 400, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Sannigrahi, S.; Pilla, F.; Basu, B.; Basu, A.S.; Zhang, Q.; Wang, Y.; Roy, P.S. Identification of conservation priority zones using spatially explicit valued ecosystem services: A case from the Indian Sundarbans. Integr. Environ. Assess. Manag. 2020, 16, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Keesstra, S.; Wittenberg, L.; Maroulis, J.; Sambalino, F.; Malkinson, D.; Cerdà, A.; Pereira, P. The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment: The Mount Carmel range, Israel. Catena 2017, 149, 857–866. [Google Scholar] [CrossRef]
- Van Eck, C.M.; Nunes, J.P.; Vieira, D.C.; Keesstra, S.; Keizer, J.J. Physically-Based modelling of the post-fire runoff response of a forest catchment in central Portugal: Using field versus remote sensing based estimates of vegetation recovery. Land Degrad. Dev. 2016, 27, 1535–1544. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Maroulis, J.; Argaman, E.; Voogt, A.; Wittenberg, L. Effects of controlled fire on hydrology and erosion under simulated rainfall. Cuad. Investig. Geogr. 2014, 40, 269–294. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban Plan. 2013, 110, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Verkerk, P.J.; Martinez de Arano, I.; Palahía, M. The bio-economy as an opportunity to tackle wildfires in Mediterranean forest ecosystems. For. Policy Econ. 2018, 86, 1–3. [Google Scholar] [CrossRef]
- Outeiro, L. Geoestadística i Gestió Ambiental; Estudis i Aplicacions de la Variabilitat Espacial i Temporal en Sòls i Aigua. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2010; p. 223. [Google Scholar]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, E4–E14. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.; Botelho, H. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Fif, E.; Oliveira, P. Efectos del fuego prescrito sobre el matorral en las propiedades del suelo. Investig. Agrar. Sist. Recur. For. 2006, 15, 262–270. [Google Scholar]
- Fernández, C.; Vega, J.A.; Fontúrbel, T. The effects of fuel reduction treatments on runoff, infiltration and erosion in two shrubland área in the north of Spain. J. Environ. Manag. 2012, 105, 96–102. [Google Scholar] [CrossRef]
- Aschmann, H. Man’s Impact on Several Regions with Mediterranean Climates. In Mediterranean—Type Ecosystems: Origin and Structure; Castri, F., Mooney, H., Eds.; Springer: Berlin, Germany, 1973; pp. 363–371. [Google Scholar]
- Arianoutsou-Faraggitaki, M. Post-fire successional recovery pf a phryganic (East Mediterranean) cosystem. Acta Oecol. Oec. Plant. 1984, 5, 387–394. [Google Scholar]
- Lovreglio, R.; Meddour-Sahar, O.; Leone, V. Goat grazing as a wildfire prevention tool: A basic review. Biogeosci. For. 2013, 7, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Perevolotsky, A.; Seligman, N.G. Role of grazing in Mediterranean rangeland ecosystems. Bioscience 1998, 12, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Nastis, A.S. Feeding behaviour of goats and utilisation of pasture and rangelands. Cah. Opt. Méditer. 1997, 25, 39–45. [Google Scholar]
- Papanastasis, V.P. Intégrer la chèvre à la foret Médirerranéenne. Unasylva 1986, 38, 44–52. [Google Scholar]
- SRCD. Grazing Handbook A Guide for Resource Managers in Coastal California; Sotoyome Resource Conservation District, Pistil Books Online: Seattle, WA, USA, 2006; p. 68. [Google Scholar]
- Hart, S.P. Recent perspectives in using goats for vegetation management in the USA. J. Dairy Sci. 2001, 84, E170–E176. [Google Scholar] [CrossRef]
- Nader, G.; Henkin, Z.; Smith, E.; Ingram, R.; Narvaez, N. Planned herbivory in the management of wildfire fuels. Rangelands 2007, 9, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2017, 613–614, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Úbeda, X. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef]
- Ministerio de Agricultura Pesca y Alimentación (MAPA). Métodos Oficiales de Análisis; Secretaría Técnica General: Madrid, Spain, 1996; Volume III, p. 234.
- Olsen, S.R.; Cole, C.V.; Frank, S.W.; Dean, L.A. Estimation of Available Phosphorus Insoils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; US Government Printing Office: Washington, DC, USA, 1954.
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium. Sodium and Potassium. In Methods of Soil Analysis Soil; Science Society of America, Ed.; ASA-SSSA: Madison, WI, USA, 1986; Volume 2, pp. 225–246. [Google Scholar]
- Launchbaugh, K.; Walker, J. Targeted grazing—A new paradigm for livestock management. In Targeted Grazing: A Natural Approach to Vegetation Management and Landscape Enhancement; Launchbaugh, K., Ed.; American Sheep Industry Association—ASI: Washington, DC, USA, 2006. [Google Scholar]
- Sherman, L.A.; Brye, K.R.; Gill, D.E.; Koenig, K.A. Soil chemistry as affected by first-time prescribed burning of a grassland restoration on a coastal plain Ultisol. Soil Sci. 2005, 170, 913–927. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Cerdà, A.; Lopez, A.J.; Zavala, L.M.; Mataix-Solera, J.; Arcenegui, V.; Novara, A. Short-term vegetation recovery after a grassland fire in Lithuania: The effects of fire severity, slope position and aspect. Land Degrad. Dev. 2016, 27, 1523–1534. [Google Scholar] [CrossRef]
- Wells, C.G.; Campbell, R.E.; DeBano, L.F.; Lewis, C.E.; Fredriksen, R.L.; Franklin, E.C.; Froelich, R.C.; Dunn, P.H. Effects of Fire on Soil: A State of Knowledge Review; USDA Forest Service General Technical Report WO-7; Department of Agriculture, Forest Service: Asheuille, NC, USA, 1979.
- Arocena, J.M.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- DeBano, L.F.; Eberlein, G.E.; Dunn, P.H. Effects of burning on chaparral soils: I. Soil nitrogen. Soil Sci. Soc. Am. J. 1979, 43, 504–509. [Google Scholar] [CrossRef]
- Schoch, P.; Binkley, D. Prescribed burning increased nitrogen availability in a mature loblolly pine stand. For. Ecol. Manag. 1986, 14, 13–22. [Google Scholar] [CrossRef]
- Lavoie, M.; Starr, G.; Mack, M.C.; Martin, T.A.; Gholz, H.L. Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a longleaf pine-slash pine forest in Florida. Nat. Area J. 2010, 30, 82–94. [Google Scholar] [CrossRef]
- Muqaddas, B.; Zhou, X.; Lewis, T.; Wild, C.; Chen, C. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in wet sclerophyll forest of Southeast Queensland, Australia. Sci. Total Environ. 2015, 536, 39–47. [Google Scholar] [CrossRef]
- Soto, B.; Díaz-Fierros, F. Interactions between plant ash leachates and soil. Int. J. Wildland Fire 1993, 3, 207–216. [Google Scholar] [CrossRef]
- Úbeda, X.; Lorca, M.; Outeiro, L.; Bernia, S.; Castellnou, M. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). Int. J. Wildland Fire 2005, 14, 379–384. [Google Scholar] [CrossRef]
- Brye, K.R. Soil physicochemical changes following 12 years of annual burning in a humid-subtropical tallgrass prairie: A hypothesis. Acta Oecol. 2006, 30, 407–413. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Nix, B.; Jacobs, K.A.; Bowles, M.L. Two decades of low-severity prescribed fire increases soil nutrient availability in Midwestern, USA oak (Quercus) forest. Geoderma 2012, 183–184, 89–91. [Google Scholar] [CrossRef]
- Girona-García, A.; Badía-Villas, D.; Martí-Dalmau, C.; Ortiz-Perpiñá, O.; Mora, J.L.; Armas-Herrera, M. Effects of prescribed fire for pasture management on soil organic matter and biological properties: A 1-year study case in the Central Pyrenees. Sci. Total Environ. 2018, 618, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Hiernaux, P.; Bielders, C.L.; Valentin, C.; Bationo, A.; Fernández-Rivera, S. Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. J. Arid Environ. 1999, 41, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Savadogo, P.; Sawadogo, L.; Tiveau, D. Effects of grazing intensity and prescribed fireon soil physical and hydrological properties and pasture yield in the savanna woodlands of Burkina Faso. Agric. Ecosyst. Environ. 2007, 118, 80–92. [Google Scholar] [CrossRef]
- Úbeda, X.; Alcañiz, M.; Borges, G.; Outeiro, L.; Francos, M. Soil Quality of abandoned agricultural terraces managed with prescribed fires and livestock in the municipality of Capafonts, Catalonia, Spain (2000–2017). Agronomy 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.H.V. The Effect of Soil Nutrient Availability on Community Structure in African Ecosystems. In Ecological Studies 42: Ecology of Tropical Savannas; Huntley, B.J., Walker, B.H., Eds.; Springer: Berlin, Germany, 1982; pp. 193–216. [Google Scholar]
- Guinto, D.F.; Xu, Z.H.; House, A.P.N.; Saffigna, P.G. Soil Chemical Properties and Forest Floor Nutrients Under Repeated Prescribed-Burning in Eucalypt Forest of South-East Queensland, Australia. N. Z. J. For. Sci. 2001, 31, 170–187. [Google Scholar]
- Shakesby, R.A.; Bento, C.P.M.; Ferreira, C.S.S.; Ferreira, A.J.D.; Stoof, C.R.; Urbanek, E.; Walsh, R.P.D. Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 2015, 28, 278–293. [Google Scholar] [CrossRef]
- Arévalo, J.R.; Chinea, E.; Barquín, E. Pasture management under goat grazing on Canary Islands. Agric. Ecosyst. Environ. 2007, 128, 291–296. [Google Scholar] [CrossRef]
- Boughton, E.H.; Quintana-Ascensio, P.F.; Bohlen, P.J.; Fauth, J.E.; Jenkins, D.G. Interactive effects of pasture management intensity, release from grazing and prescribed fire on forty subtropical wetland plant assemblages. J. Appl. Ecol. 2016, 53, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.L.; Knapp, A.K.; Briggs, J.M.; Blair, J.M.; Steinauer, E.M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 1998, 280, 745–747. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Engle, D.M. Application of fire-grazing interaction to restore a shifting mosaic on tallgrass prairie. J. Appl. Ecol. 2004, 41, 604–614. [Google Scholar] [CrossRef]
- Crawley, M.J. (Ed.) Plant-Herbivore Dynamics; Plant Ecol. Blackwell Science: Oxford, UK, 1997; pp. 401–474. [Google Scholar]
- Proulux, M.; Mazumder, A. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystem. Ecology 1998, 79, 2581–2592. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Senciales, J.M.; Cerdà, A.; Brevik, E.C. The multidisciplinary origin of soil geography: A review. Earth-Sci. Rev. 2018, 177, 114–123. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; de Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Visser, S.; Keesstra, S.; Maas, G.; De Cleen, M. Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030. Sustainability 2019, 11, 6792. [Google Scholar] [CrossRef] [Green Version]
- Wadsworth, R.A.; Lebbie, A.R. What Happened to the Forests of Sierra Leone? Land 2019, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Bardgett, R.D. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Kolden, C.A. We’re not doing enough prescribed fire in the Western United States to mitigate wildfire risk. Fire 2019, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.; Holloway, P.; Christiansen, T.B.; Miller, J.A.; D’Odorico, P.; Okin, G.S. An assessment of multiple drivers determining woody species composition and structure: A case study from the Kalahari, Botswana. Land 2019, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Di Prima, S.; Lassabatere, L.; Rodrigo-Comino, J.; Marrosu, R.; Pulido, M.; Angulo-Jaramillo, R.; Úbeda, X.; Keesstra, S.; Cerdà, A.; Pirastru, M. Comparing transient and steady-state analysis of single-ring infiltrometer data for an abandoned field affected by fire in Eastern Spain. Water 2018, 10, 514. [Google Scholar] [CrossRef] [Green Version]
- Novara, A.; Gristina, L.; Bodí, M.B.; Cerdà, A. The impact of fire on redistribution of soil organic matter on a Mediterranean hillslope under maquia vegetation type. Land Degrad. Dev. 2011, 22, 530–536. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Pilla, F.; Basu, B.; Basu, A.S.; Sarkar, K.; Chakraborti, S.; Bhatt, A. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Sci. Total Environ. 2020, 725, 138331. [Google Scholar] [CrossRef]
- Francos, M.; Úbeda, X.; Tort, J.; Panareda, J.M.; Cerdà, A. The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula. Glob. Planet. Chang. 2016, 145, 11–16. [Google Scholar] [CrossRef]
- Salesa, D.; Amodio, A.M.; Rosskopf, C.M.; Garfì, V.; Terol, E.; Cerdà, A. Three topographical approaches to survey soil erosion on a mountain trail affected by a forest fire. Barranc de la Manesa, Llutxent, Eastern Iberian Peninsula. J. Environ. Manag. 2020, 264, 110491. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Borja, M.E.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; Gonzalez-Romero, J.; Moya, D.; de las Heras, J. Short-term changes in infiltration between straw mulched and non-mulched soils after wildfire in Mediterranean forest ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecol. Eng. 2017, 108, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Baker, W.L. Variable Forest Structure and Fire Reconstructed Across Historical Ponderosa Pine and Mixed Conifer Landscapes of the San Juan Mountains, Colorado. Land 2019, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Saputra, E. Beyond fires and deforestation: Tackling land subsidence in peatland areas, a case study from Riau, Indonesia. Land 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Hanberry, B.B. Reclassifying the Wildland–Urban Interface Using Fire Occurrences for the United States. Land 2020, 9, 225. [Google Scholar] [CrossRef]
- Colantoni, A.; Egidi, G.; Quaranta, G.; D’Alessandro, R.; Vinci, S.; Turco, R.; Salvati, L. Sustainable Land Management, Wildfire Risk and the Role of Grazing in Mediterranean Urban-Rural Interfaces: A Regional Approach from Greece. Land 2020, 9, 21. [Google Scholar] [CrossRef] [Green Version]
Soil Properties | Statistics | Before PF | After PF 0 Year | After PF 1 Year | After PF 3 Years | After PF 13 Years |
---|---|---|---|---|---|---|
pH | Min | 7.42 | 7.40 | 7.55 | 7.38 | 7.20 |
Max | 7.75 | 7.95 | 8.46 | 8.13 | 7.97 | |
Mean | 7.61 | 7.74 | 8.13 | 7.81 | 7.75 | |
SD | 0.09 | 0.10 | 0.22 | 0.13 | 0.16 | |
Variance | 0.01 | 0.01 | 0.05 | 0.02 | 0.02 | |
SE | 0.01 | 0.02 | 0.03 | 0.02 | 0.03 | |
EC (µS cm−1) | Min | 238.00 | 260.00 | 269.00 | 159.90 | 116.60 |
Max | 535.00 | 801.00 | 688.00 | 300.00 | 204.50 | |
Mean | 326.52 | 439.46 | 378.36 | 216.20 | 167.89 | |
SD | 66.99 | 133.95 | 83.57 | 33.23 | 24.70 | |
Variance | 4487.18 | 17,942.55 | 6984.58 | 1104.31 | 610.12 | |
SE | 10.34 | 20.67 | 12.90 | 5.13 | 4.51 | |
EC (%) | Min | 8.22 | 8.43 | 6.77 | 6.53 | 6.55 |
Max | 15.65 | 23.82 | 19.00 | 16.30 | 14.24 | |
Mean | 10.63 | 12.19 | 10.36 | 9.70 | 8.78 | |
SD | 1.89 | 3.21 | 2.41 | 2.19 | 1.39 | |
Variance | 3.57 | 10.31 | 5.79 | 4.79 | 1.95 | |
SE | 0.29 | 0.50 | 0.37 | 0.34 | 0.25 | |
SOC (%) | Min | 5.21 | 6.06 | 2.98 | 0.70 | 0.06 |
Max | 18.03 | 26.57 | 17.55 | 13.88 | 16.82 | |
Mean | 9.34 | 11.80 | 5.97 | 5.69 | 5.37 | |
SD | 2.83 | 4.01 | 2.35 | 2.94 | 3.79 | |
Variance | 8.02 | 16.08 | 5.50 | 8.64 | 14.33 | |
SE | 0.44 | 0.62 | 0.36 | 0.45 | 0.58 | |
TN (%) | Min | 0.39 | 0.44 | 0.43 | 0.37 | 0.40 |
Max | 1.09 | 1.55 | 1.12 | 1.19 | 1.11 | |
Mean | 0.60 | 0.69 | 0.63 | 0.64 | 0.58 | |
SD | 0.16 | 0.24 | 0.17 | 0.18 | 0.13 | |
Variance | 0.03 | 0.06 | 0.03 | 0.03 | 0.02 | |
SE | 0.02 | 0.04 | 0.03 | 0.03 | 0.02 | |
Ca2+ (ppm) | Min | 8914.00 | 7881.00 | 9778.00 | 16,316.63 | 13,986.00 |
Max | 12,200.00 | 14,960.00 | 17,390.00 | 36,058.88 | 23,142.00 | |
Mean | 10,389.32 | 9829.29 | 11,482.50 | 26,226.34 | 17,091.73 | |
SD | 766.44 | 1197.69 | 1460.56 | 3790.68 | 2118.29 | |
Variance | 587,429.17 | 1,434,471.04 | 2,133,250.01 | 14,369,256.38 | 4,487,132.06 | |
SE | 118.26 | 184.81 | 225.37 | 584.91 | 386.74 | |
Mg2+ (ppm) | Min | 4.20 | 147.60 | 117.20 | 233.77 | 185.68 |
Max | 370.10 | 525.90 | 981.50 | 430.32 | 400.21 | |
Mean | 207.15 | 292.93 | 209.95 | 327.54 | 262.07 | |
SD | 64.21 | 93.00 | 129.17 | 46.89 | 50.20 | |
Variance | 4122.76 | 8649.87 | 16,685.91 | 2198.29 | 2520.42 | |
SE | 9.91 | 14.35 | 19.93 | 7.23 | 9.17 | |
K+ (ppm) | Min | 356.90 | 441.60 | 272.30 | 314.19 | 419.40 |
Max | 2203.00 | 3270.00 | 1861.00 | 908.53 | 784.37 | |
Mean | 995.39 | 979.92 | 712.47 | 515.13 | 557.91 | |
SD | 453.43 | 480.80 | 274.33 | 100.36 | 89.70 | |
Variance | 205,596.05 | 231,169.61 | 75,258.18 | 10,073.03 | 8045.90 | |
SE | 69.97 | 74.19 | 42.33 | 159.90 | 16.38 | |
P (ppm) | Min | 6.20 | 0.00 | 11.00 | 37.80 | 56.70 |
Max | 144.90 | 481.00 | 102.00 | 137.46 | 137.46 | |
Mean | 60.91 | 116.54 | 45.77 | 77.84 | 77.98 | |
SD | 32.12 | 104.85 | 21.28 | 19.43 | 18.12 | |
Variance | 1031.94 | 10,994.44 | 452.99 | 377.72 | 328.31 | |
SE | 4.96 | 16.18 | 3.28 | 3.00 | 3.36 |
pH | EC | TC | TN | Ca2+ | Mg2+ | K+ | P | |
---|---|---|---|---|---|---|---|---|
Before PF–After PF | 0.000 | 0.000 | 0.008 | 0.040 | 0.001 | 0.000 | 0.950 | 0.003 |
Before PF–1 year | 0.000 | 0.001 | 0.289 | 0.452 | 0.000 | 0.900 | 0.003 | 0.016 |
Before PF–3 years | 0.000 | 0.000 | 0.039 | 0.335 | 0.000 | 0.000 | 0.000 | 0.001 |
Before PF–13 years | 0.000 | 0.000 | 0.000 | 0.506 | 0.000 | 0.000 | 0.000 | 0.012 |
After PF–1 year | 0.000 | 0.004 | 0.001 | 0.161 | 0.000 | 0.000 | 0.000 | 0.000 |
After PF–3 years | 0.001 | 0.000 | 0.000 | 0.227 | 0.000 | 0.023 | 0.000 | 0.904 |
After PF–13 years | 0.138 | 0.000 | 0.000 | 0.180 | 0.000 | 0.178 | 0.000 | 0.945 |
1 year–3 years | 0.000 | 0.000 | 0.198 | 0.828 | 0.000 | 0.000 | 0.000 | 0.000 |
1 year–13 years | 0.000 | 0.000 | 0.001 | 0.179 | 0.000 | 0.000 | 0.001 | 0.000 |
3 years–13 years | 0.000 | 0.000 | 0.048 | 0.126 | 0.000 | 0.000 | 0.043 | 0.444 |
pH | EC µS cm−1 | TC% | SOC% | TN% | Ca2+ ppm | Mg2+ ppm | K+ ppm | Ava P ppm | |
---|---|---|---|---|---|---|---|---|---|
Tivissa 13y | 7.75 | 167.89 | 8.78 | 5.37 | 0.58 | 17091.73 | 262.07 | 557.91 | 77.98 |
[64] | >6.5 B | - | - | - | - | >3000 H | >245 H | >25 H | >30 H |
[65] | >7 B | <500 L | - | >2 H | - | >400 H | >30 H | >100 U | >50 U |
[63] | - | 100–450 L | - | - | - | >2000 H | >180 H | 280–800 H | 40–100 H |
[66] | 7–8 M | 100–400 L | - | >3.5 H | >0.2 H | >4000 H | <300 L | >300 H | >30 H |
[67] | – | - | - | - | - | >300 H | >100 H | >80 H | >8 H |
[68] | 7–8 M | - | - | 4–10 M | >0.5 H | >2000 H | 60–500 M | >250 H | >15 H |
[62] | 7.5–8.5 B | <400 L | - | - | - | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcañiz, M.; Úbeda, X.; Cerdà, A. A 13-Year Approach to Understand the Effect of Prescribed Fires and Livestock Grazing on Soil Chemical Properties in Tivissa, NE Iberian Peninsula. Forests 2020, 11, 1013. https://doi.org/10.3390/f11091013
Alcañiz M, Úbeda X, Cerdà A. A 13-Year Approach to Understand the Effect of Prescribed Fires and Livestock Grazing on Soil Chemical Properties in Tivissa, NE Iberian Peninsula. Forests. 2020; 11(9):1013. https://doi.org/10.3390/f11091013
Chicago/Turabian StyleAlcañiz, Meritxell, Xavier Úbeda, and Artemi Cerdà. 2020. "A 13-Year Approach to Understand the Effect of Prescribed Fires and Livestock Grazing on Soil Chemical Properties in Tivissa, NE Iberian Peninsula" Forests 11, no. 9: 1013. https://doi.org/10.3390/f11091013
APA StyleAlcañiz, M., Úbeda, X., & Cerdà, A. (2020). A 13-Year Approach to Understand the Effect of Prescribed Fires and Livestock Grazing on Soil Chemical Properties in Tivissa, NE Iberian Peninsula. Forests, 11(9), 1013. https://doi.org/10.3390/f11091013