An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Methods
2.2.1. Architecture of the Model
2.2.2. Stomatal Pore Measurement
2.3. Evaluation Indices
2.4. Model Parameters and Operating Environment
3. Results
3.1. Pore Detection and Segmentation
3.2. Pore Measurement
3.3. Algorithm Comparison
3.4. Model Generalization Ability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fanourakis, D.; Bouranis, D.; Giday, H.; Carvalho, D.R.; Nejad, A.R.; Ottosen, C.O. Improving stomatal functioning at elevated growth air humidity: A review. J. Plant Physiol. 2016, 207, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Fanourakis, D.; Aliniaeifard, S.; Sellin, A.; Giday, H.; Korner, O.; Nejad, A.R.; Delis, C.; Bouranis, D.; Koubouris, G.; Kambourakis, E.; et al. Stomatal behavior following mid- or long-term exposure to high relative air humidity: A review. Plant Physiol. Biochem. 2020, 153, 92–105. [Google Scholar] [CrossRef]
- Fanourakis, D.; Nikoloudakis, N.; Pappi, P.; Markakis, E.; Doupis, G.; Charova, S.N.; Delis, C.; Tsaniklidis, G. The role of proteases in determining stomatal development and tuning pore aperture: A review. Plants 2020, 9, 340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Fanourakis, D.; Hyldgaard, B.; Giday, H.; Aulik, I.; Bouranis, D.; Körner, O.; Ottosen, C.-O. Stomatal anatomy and closing ability is affected by supplementary light intensity in rose (Rosa hybrida L.). Hortic. Sci. 2019, 46, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Giday, H.; Kjaer, K.H.; Fanourakis, D.; Ottosen, C.O. Smaller stomata require less severe leaf drying to close: A case study in rosa hydrida. J. Plant Physiol. 2013, 170, 1309–1316. [Google Scholar] [CrossRef]
- Carvalho, D.R.A.; Fanourakis, D.; Correia, M.J.; Monteiro, J.A.; Araújo-Alves, J.P.L.; Vasconcelos, M.W.; Almeida, D.P.F.; Heuvelink, E.; Carvalho, S.M.P. Root-to-shoot aba signaling does not contribute to genotypic variation in stomatal functioning induced by high relative air humidity. Environ. Exp. Bot. 2016, 123, 13–21. [Google Scholar] [CrossRef]
- Franks, P.J.; Beerling, D.J. Maximum leaf conductance driven by co2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci. USA 2009, 106, 10343–10347. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Yu, Q.; Xu, C.; Li, J.; Qin, G. Rapid estimation of stomatal density and stomatal area of plant leaves based on object-oriented classification and its ecological trade-off strategy analysis. Forests 2018, 9, 616. [Google Scholar] [CrossRef] [Green Version]
- Fanourakis, D.; Giday, H.; Milla, R.; Pieruschka, R.; Kjaer, K.H.; Bolger, M.; Vasilevski, A.; Nunes-Nesi, A.; Fiorani, F.; Ottosen, C.O. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Ann. Bot. 2015, 115, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Fanourakis, D.; Heuvelink, E.; Carvalho, S.M.P. Spatial heterogeneity in stomatal features during leaf elongation: An analysis using rosa hybrida. Funct. Plant Biol. 2015, 42, 737–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanourakis, D.; Giday, H.; Hyldgaard, B.; Bouranis, D.; Körner, O.; Ottosen, C.O. Low air humidity during cultivation promotes stomatal closure ability in rose. Eur. J. Hortic. Sci. 2019, 84, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Fanourakis, D.; Bouranis, D.; Tsaniklidis, G.; Nejad, A.R.; Ottosen, C.-O.; Woltering, E.J. Genotypic and phenotypic differences in fresh weight partitioning of cut rose stems: Implications for water loss. Acta Physiol. Plant. 2020, 42, 1–10. [Google Scholar] [CrossRef]
- Fanourakis, D.; Giday, H.; Li, T.; Kambourakis, E.; Ligoxigakis, E.K.; Papadimitriou, M.; Strataridaki, A.; Bouranis, D.; Fiorani, F.; Heuvelink, E.; et al. Antitranspirant compounds alleviate the mild-desiccation-induced reduction of vase life in cut roses. Postharvest Biol. Technol. 2016, 117, 110–117. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, L.; Zhao, H.; Jiang, Z.; Cai, J. Differences in near isohydric and anisohydric behavior of contrasting poplar hybrids (i-101 (populus alba l.) × 84k (populus alba l. × populus glandulosa uyeki)) under drought-rehydration treatments. Forests 2020, 11, 402. [Google Scholar] [CrossRef] [Green Version]
- Fanourakis, D.; Hyldgaard, B.; Giday, H.; Bouranis, D.; Körner, O.; Nielsen, K.L.; Ottosen, C.-O. Differential effects of elevated air humidity on stomatal closing ability of kalanchoë blossfeldiana between the c 3 and cam states. Environ. Exp. Bot. 2017, 143, 115–124. [Google Scholar] [CrossRef]
- Taylor, S.H.; Franks, P.J.; Hulme, S.P.; Spriggs, E.; Christin, P.A.; Edwards, E.J.; Woodward, F.I.; Osborne, C.P. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytol. 2012, 193, 387–396. [Google Scholar] [CrossRef]
- Sørensen, H.K.; Fanourakis, D.; Tsaniklidis, G.; Bouranis, D.; Nejad, A.R.; Ottosen, C.-O. Using artificial lighting based on electricity price without a negative impact on growth, visual quality or stomatal closing response in passiflora. Sci. Hortic. 2020, 267, 109354. [Google Scholar] [CrossRef]
- Brown, H.T.; Escombe, F. Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Ann. Bot. 1900, os-14, 537–542. [Google Scholar] [CrossRef]
- Franks, P.J.; Drake, P.L.; Beerling, D.J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis usingeucalyptus globulus. Plant Cell Environ. 2009, 32, 1737–1748. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Grein, M.; Utescher, T.; Konrad, W. Stomatal pore length change in leaves of eotrigonobalanus furcinervis (fagaceae) from the late eocene to the latest oligocene and its impact on gas exchange and co2 reconstruction. Rev. Palaeobot. Palynol. 2012, 174, 106–112. [Google Scholar] [CrossRef]
- Fanourakis, D.; Heuvelink, E.; Carvalho, S.M. A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. J. Plant Physiol. 2013, 170, 890–898. [Google Scholar] [CrossRef]
- Kuznichov, D.; Zvirin, A.; Honen, Y.; Kimmel, R. Data augmentation for leaf segmentation and counting tasks in rosette plants. arXiv 2019, arXiv:1903.08583. [Google Scholar]
- Omasa, K.; Onoe, M. Measurement of stomatal aperture by digital image processing. Plant Cell Physiol. 1984, 25, 1379–1388. [Google Scholar] [CrossRef] [Green Version]
- Laga, H.; Shahinnia, F.; Fleury, D. Image-based plant stomata phenotyping. In Proceedings of the 13th International Conference on Controle, Automation, Robotics and Vision (ICARCV 2014), Marina Bay Sands, Singapore, 10–12 December 2014; pp. 217–240. [Google Scholar]
- Liu, S.; Tang, J.; Petrie, P.; Whitty, M. A Fast Method to Measure Stomatal Aperture by Mser on Smart Mobile Phone. In Proceedings of the Applied Industrial Optics: Spectroscopy, Imaging and Metrology 2016, Heidelberg, Germany, 25–28 July 2016. [Google Scholar]
- Jayakody, H.; Liu, S.; Whitty, M.; Petrie, P. Microscope image based fully automated stomata detection and pore measurement method for grapevines. Plant Methods 2017, 13, 94. [Google Scholar] [CrossRef]
- Toda, Y.; Toh, S.; Bourdais, G.; Robatzek, S.; Maclean, D.; Kinoshita, T. Deepstomata: Facial recognition technology for automated stomatal aperture measurement. bioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Bhugra, S.; Mishra, D.; Anupama, A.; Chaudhury, S.; Lall, B.; Chugh, A.; Chinnusamy, V. Deep convolutional neural networks based framework for estimation of stomata density and structure from microscopic images. In Proceedings of the Computer Vision—ECCV 2018 Workshops, Munich, Germany, 8–14 September 2018; pp. 412–423. [Google Scholar]
- Li, K.; Huang, J.; Song, W.; Wang, J.; Lv, S.; Wang, X. Automatic segmentation and measurement methods of living stomata of plants based on the cv model. Plant Methods 2019, 15, 67. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask-rcnn. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- The Keyence’s Vhx-2000 Large Depth-of-Field Microscope Observation System. Available online: https://www.keyence.com.cn/products/microscope/digital-microscope/vhx-2000/models/vhx-2000/ (accessed on 6 July 2020).
- Hammel, B.; Sullivan-Molina, N. Bdhammel/Least-Squares-Ellipse-Fitting: Initial Release. Available online: https://zenodo.org/record/2578663 (accessed on 6 July 2020).
- Wada, K. Labelme: Image Polygonal Annotation with Python. Available online: https://github.com/wkentaro/labelme (accessed on 6 July 2020).
- Abdulla, W. Mask R-CNN for Object Detection and Instance Segmentation on Keras and Tensorflow. 2017. Available online: https://github.com/matterport/Mask_RCNN (accessed on 6 July 2020).
- Halır, R.; Flusser, J. Numerically stable direct least squares fitting of ellipses. In Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization, Plzen-Bory, Czech Republic, 9–13 February 1998. [Google Scholar]
- Liang, Y.K.; Dubos, C.; Dodd, I.C.; Holroyd, G.H.; Hetherington, A.M.; Campbell, M.M. Atmyb61, an r2r3-myb transcription factor controlling stomatal aperture in arabidopsis thaliana. Curr. Biol. 2005, 15, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Fetter, K.C.; Eberhardt, S.; Barclay, R.S.; Wing, S.; Keller, S.R. Stomatacounter: A neural network for automatic stomata identification and counting. New Phytol. 2019, 223, 1671–1681. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Learning Rate | 0.001, 0.001, 0.0001 |
Learning momentum | 0.9 |
Weight decay | 0.0001 |
Epochs | 40, 120, 160 |
Steps per epoch | 100 |
Batch size | 1 |
GradientClipNorm | 5.0 |
Number of Stomatal Pore | Average Pore Length Accuracy (%) | Average Pore Width Accuracy (%) | Average Area Accuracy (%) | Average Eccentricity Accuracy (%) | Average the Degree of Stomatal Opening Accuracy (%) |
---|---|---|---|---|---|
2201 | 94.66 | 93.54 | 90.73 | 99.09 | 92.95 |
Methods | Li’s | Proposed |
---|---|---|
Average pore length error | 16.8% | 5.3% |
Average pore width error | 19.3% | 6.5% |
Average area error | 37.2% | 9.27% |
Average eccentricity error | 1.5% | 0.91% |
Average stomatal aperture error | 13% | 7.05% |
Dataset | Without Fine-Tuning | With Fine-Tuning | ||
---|---|---|---|---|
Precision | Recall | Precision | Recall | |
Ginkgo | 64.6% | 32.4% | 84.7% | 69% |
Poplar | 12.4% | 7.2% | 76.5% | 80% |
Dataset | Relative Error (%) | ||||
---|---|---|---|---|---|
Area | Pore Length | Pore Width | Eccentricity | Stomatal Aperture | |
Ginkgo | 13.65 | 7.5 | 10.83 | 0.97 | 13.65 |
Poplar | 19.7 | 7.79 | 14.1 | 1.72 | 11.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Li, J.; Li, K.; Chen, J.; Huang, J. An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model. Forests 2020, 11, 954. https://doi.org/10.3390/f11090954
Song W, Li J, Li K, Chen J, Huang J. An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model. Forests. 2020; 11(9):954. https://doi.org/10.3390/f11090954
Chicago/Turabian StyleSong, Wenlong, Junyu Li, Kexin Li, Jingxu Chen, and Jianping Huang. 2020. "An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model" Forests 11, no. 9: 954. https://doi.org/10.3390/f11090954
APA StyleSong, W., Li, J., Li, K., Chen, J., & Huang, J. (2020). An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model. Forests, 11(9), 954. https://doi.org/10.3390/f11090954