Consequences of Traditional Management in the Production and Quality of Copal Resin (Bursera bipinnata (Moc. & Sessé ex DC.) Engl.) in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Documenting Management Strategies
2.3. Quantification of Resin Yield in Wild and Managed Trees
2.4. Identification of Organic Compounds in Copal Resin from Wild and Managed Trees
3. Results
3.1. Local Criteria for Classifying Copal Trees
3.2. Management Strategies and Practices
3.3. Cultural Aspects of Copal Extraction
3.4. Structural Variables and Copal Resin Production in Wild and Managed Populations
3.5. Characterization of Resin Quality
4. Discussion
4.1. Copal Management Strategies and Their Rationale
4.2. Artificial Selection Criteria
4.3. Association between Management and Resin Production
4.4. Organic Compounds in Copal Resin and Their Potential Association with Management
4.5. Traditional Management and Domestication of Bursera Bipinnata
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matos-Moctezuma, E. Mesoamerica Antigua; Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado: Tabacalera, Mexico, 1998. [Google Scholar]
- Hernández-Xolocotzi, E. Aspects of plants domestication in Mexico: A personal view. In Biological Diversity of Mexico: Origins and Distribution; Ramamoorthy, T.P., Bye, R., Lot, A., Fa, J., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 733–756. ISBN 978-019-506-674-6. [Google Scholar]
- Bye, R. The Role of Humans in the Diversification of Plants in Mexico. In Biological Diversity of Mexico: Origins and Distribution; Ramamoorthy, T.P., Bye, R., Lot, A., Fa, J., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 707–731. ISBN 978-019-506-674-6. [Google Scholar]
- Casas, A.; Caballero, J.; Mapes, C.; Zárate, S. Manejo de la vegetación, domesticación de plantas y origen de la agricultura en Mesoamérica. Bol. Soc. Bot. Méx. 1997, 61, 31–47. [Google Scholar] [CrossRef]
- Casas, A.; Otero-Arnaiz, A.; Pérez-Negrón, E.; Valiente-Banuet, A. In situ management and domestication of plants in Mesoamerica. Ann. Bot. 2007, 100, 1101–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanckaert, I.; Paredes-Flores, M.; Espinosa-García, F.; Pinero, D.; Lira, R. Ethnobotanical, morphological, phytochemical and molecular evidence for the incipient domestication of Epazote (Chenopodium ambrosioides L.: Chenopodiaceae) in a semi-arid region of Mexico. Genet. Resoures Crop Evol. 2011, 59, 557–573. [Google Scholar] [CrossRef]
- Bautista, L.A.; Parra, F.; Espinosa-García, F.J. Efectos de la domesticación de plantas en la diversidad fitoquímica. In Temas Selectos de Ecología Química de Insectos; Rojas, J.C., Malo, E.A., Eds.; El Colegio de la Frontera Sur: Lerma Campeche, Mexico, 2012; pp. 253–267. ISBN 978-607-842-972-1. [Google Scholar]
- Blancas, J.; Casas, A.; Pérez-Salicrup, D.; Caballero, J.; Vega, E. Ecological and sociocultural factors influencing plant management in Nahuatl communities of the Tehuacan Valley, Mexico. J. Ethnobiol. Ethnomed. 2013, 9, 2–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueredo-Urbina, C.J.; Casas, A.; Torres-García, I. Morphological and genetic divergence between Agave inaequidens, A. cupreata and the domesticated A. hookeri. Analysis of their evolutionary relationships. PLoS ONE 2017, 12, e0187260. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Galván, G.; Bye, R.; Eguiarte, L.E.; Cristians, S.; Pérez-López, P.; Vergara-Silva, F.; Luna-Cavazos, M. Domestication of aromatic medicinal plants in Mexico: Agastache (Lamiaceae)—An ethnobotanical, morpho-physiological, and phytochemical analysis. J. Ethnobiol. Ethnomed. 2020, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Casas, A.; Vázquez, M.; Viveros, J.; Caballero, J. Plant management among the Nahua and the Mixtec in the Balsas River Basin, Mexico: An ethnobotanical approach to the study of plant domestication. Hum. Ecol. 1996, 24, 455–478. [Google Scholar] [CrossRef]
- Casas, A.; Caballero, J. Traditional Management and Morphological Variation in Leucaena esculenta (Fabaceae: Mimosoideae) in the Mixtec Region of Guerrero, Mexico. Econ. Bot. 1996, 50, 167–181. [Google Scholar] [CrossRef]
- Caballero, A.; Casas, A.; Cortes, L.; Mapes, C. Patrones en el conocimiento, uso y manejo de plantas en pueblos indígenas en México. Estudios Atacameños 1998, 16, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Blancas, J.; Casas, A.; Rangel-Landa, S.; Moreno-Calles, A.; Torres, I.; Pérez-Negrón, E.; Solís, L.; Delgado-Lemus, A.; Parra, F.; Arellanes, Y.; et al. Plant Management in the Tehuacán-Cuicatlán Valley, Mexico. Econ. Bot. 2010, 64, 287–302. [Google Scholar] [CrossRef]
- Mapes, C.; Caballero, J.; Espitia, E.; Bye, R. Morphophysiological variation in some Mexican species of vegetable Amaranthus: Evolutionary tendencies under domestication. Genet. Resoures Crop Evol. 1996, 43, 283–290. [Google Scholar] [CrossRef]
- Bernal-Ramírez, L.A.; Bravo-Aviléz, D.; Fornoni, J.; Valverde, P.L.; Rendón, A. Variación morfológica en Anoda cristata en la Montaña de Guerrero. In Especies Vegetales Poco Valoradas: Una Alternativa Para la Seguridad Alimentaria; Mera, L.M., Castro, D., Bye, R., Eds.; UNAM-SNICS-SINAREFI: Ciudad de México, Mexico, 2011; pp. 115–126. ISBN 978-607-022-589-5. [Google Scholar]
- Bye, R.; Linares, E. Continuidad y aculturación de plantas alimenticias: Los quelites especies subutilizadas de México. In Especies Vegetales Poco Valoradas: Una Alternativa Para la Seguridad Alimentaria; Mera, L.M., Castro, D., Bye, R., Eds.; UNAM-SNICS-SINAREFI: Ciudad de México, Mexico, 2011; pp. 11–22. ISBN 978-607-022-589-5. [Google Scholar]
- Rangel-Landa, S.; Casas, A.; García-Frapolli, E.; Lira, R. Sociocultural and ecological factors influencing management of edible and non-edible plants: The case of Ixcatlán, Mexico. J. Ethnobiol. Ethnomed. 2017, 13, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán-Rodríguez, L.; Manzo-Ramos, F.; Maldonado-Almanza, B.; Martínez-Ballesté, A.; Blancas, J. Wild medicinal species traded in The Balsas Basin, Mexico: Risk analysis and recommendations for their conservation. J. Ethnobiol. 2017, 37, 743–764. [Google Scholar] [CrossRef]
- Cházaro, M.; Mostul, B.; García, F. Los copales mexicanos (Bursera spp.). Bouteloua 2010, 7, 57–70. [Google Scholar]
- Rzedowski, J.; Guevara-Féfer, F. Burseraceae. Flora del Bajíoy de Regiones Adyacentes. Fascículo 3; Instituto de Ecología, A. C., Centro Regional del Bajío: Pátzcuaro, Mexico, 1992. [Google Scholar]
- Ogbazghi, W.; Rijkers, T.; Wessel, M.; Bongers, F. Distribution of the frankincense tree Boswellia papyrifera in Eritrea: The role of environment and land use. J. Biogeogr. 2006, 33, 524–535. [Google Scholar] [CrossRef]
- Nussinovitch, A. Plant Gum Exudates of the World. Sources, Distribution, Properties, and Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK; New York, NY, USA, 2010; ISBN 978-142-005-223-7. [Google Scholar]
- Purata, S.E. Algunos usos del copal. In Uso y Manejo de Los Copales Aromáticos: Resinas y Aceites; Purata, S.E., Ed.; Colección Manejo Campesino de los Recursos Naturales: México, D.F., Mexico, 2008. [Google Scholar]
- Linares, E.; Bye, R. El copal en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Biodiversitas 2008, 78, 8–11. [Google Scholar]
- Cruz, A.; Salazar, M.L.; Campos, O.M. Antecedentes y actualidad del aprovechamiento de copal en la Sierra de Huautla, Morelos. Revista de Geografía Agrícola 2006, 37, 97–116. [Google Scholar]
- Montúfar, A. El copal: Resina sagrada prehispánica y actual. In Flor y flora. Su uso ritual en Mesoamérica. México: Secretaría de Educación del Gobierno del Estado de México; Albores, B., Ed.; El Colegio Mexiquense, A.C.: Zinacantepec, Mexico, 2015; pp. 86–98. ISBN 978-607-495-412-8. [Google Scholar]
- Mena, F. Estrategias Ecológicas y Culturales Para Garantizar la Disponibilidad de Productos Forestales no Maderables: Árboles Medicinales en la Selva Baja del Sur de Morelos. Master’s Thesis, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico, 2018. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Instituto de Geografía, Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2014. [Google Scholar]
- SEDATU. Secretaría de Desarrollo Agrario Territorial y Urbano Padrón e Histórico de Núcleos Agrarios. Registro Agrario Nacional. 2020. Available online: https://phina.ran.gob.mx/index.php (accessed on 5 May 2020).
- Rzedowski, J. Vegetación de México, 1st ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: México, D.F. Mexico, 2006. [Google Scholar]
- Maldonado-Almanza, B. Aprovechamiento de los recursos florísticos de la Sierra de Huautla Morelos, México. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 1997. [Google Scholar]
- INEGI. Instituto Nacional de Estadística y Geografía: Censo de Población y Vivienda. 2010. Available online: https://www.inegi.org (accessed on 5 May 2020).
- Martin, G. Etnobotánica: Manual de métodos. Nordan-Comunidad; WWF-UK-UNESCO-Kew Royal Botanic Garden: Montevideo, Uruguay, 2001. [Google Scholar]
- Bernard, R. Métodos de Investigación en Antropología. Abordajes Cualitativos y Cuantitativos, 2nd ed.; Altamira Press: Walnut Creek, CA, USA, 2006. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 5 April 2020).
- Villa-Ruano, N.; Pacheco-Hernández, Y.; Becerra-Martínez, E.; Zárate-Reyes, J.A.; Cruz-Durán, R. Chemical profile and pharmacological effects of the resin and essential oil from Bursera slechtendalii: A medicinal “copal tree” of southern Mexico. Fitoterapia 2018, 128, 86–92. [Google Scholar] [CrossRef]
- Lucero Gómez, P.; Mathe, C.; Vieillescazes, C.; Bucio, L.; Belio, I.; Vega, R. Analysis of Mexican reference standards for Bursera spp. resins by Gas Chromatography-Mass Spectrometry and application to archaeological objects. J. Archaeol. Sci. 2014, 41, 679–690. [Google Scholar] [CrossRef]
- Muñoz-Acevedo, A.; Serrano-Uribe, A.; Parra-Navas, X.J.; Olivares-Escobar, L.A.; Niño-Porras, M.E. Análisis multivariable y variabilidad química de los metabolitos volátiles presentes en las partes aéreas y la resina de Bursera graveolens (Kunth) Triana & Planch. de Soledad (Atlántico, Colombia). Bol. Lat. Caribe Plant Med. Aromat. 2013, 12, 322–337. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 978-193-263-321-4. [Google Scholar]
- Linstrom, P.J.; Mallard, W.G.J. The NIST chemistry WebBook: A chemical data resource on the internet. J. Chem. Eng. Data 2001, 46, 1059–1063. [Google Scholar] [CrossRef]
- Carrera-Martínez, C.A.; Rosas-López, R.; Rodríguez-Monroy, M.A.; Canales-Martínez, M.M.; Román-Guerrero, A.; Jiménez-Alvarado, R. Chemical Composition and in vivo Anti-inflammatory Activity of Bursera morelensis Ramírez Essential Oil. J. Essent. Oil Bear. Plants 2014, 17, 758–768. [Google Scholar] [CrossRef]
- García-Rodríguez, Y.M.; Torres-Gurrola, G.; Meléndez-González, C.; Espinosa-García, F.J. Phenotypic variations in the foliar chemical profile of Persea americana Mill. cv. Hass. Chem. Biodivers. 2016, 13, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Crowther, A.; Veall, M.A.; Boivin, N.; Horton, M.; Kotarba-Morley, A.; Fuller, D.Q.; Fenn, T.; Haji, O.; Matheson, C.D. Use of Zanzibar copal (Hymenaea verrucosa Gaertn.) as incense at Unguja Ukuu, Tanzania in the 7-8th century CE: Chemical insights into trade and Indian Ocean interactions. J. Archaeol. Sci. 2014, 53, 374–390. [Google Scholar] [CrossRef]
- Osborne, J. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 12. [Google Scholar]
- Alcorn, J. El Te’lom huasteco: Presente, pasado y futuro de un sistema de silvicultura indígena. Biotica 1983, 8, 315–331. [Google Scholar]
- Arellano, E.; Casas, A. Morphological variation and domestication of Escontria chiotilla (Cactaceae) under silvicultural management in the Tehuacán Valley, Central Mexico. Genet. Resoures Crop Evol. 2003, 50, 439–453. [Google Scholar] [CrossRef]
- Moreno-Calles, A.I.; Casas, A.; García-Frapolli, E.; Torres-Gacía, I. Traditional agroforestry systems of multi-crop “milpa” and “chichipera” cactus forest in the arid Tehuacán Valley, Mexico: Their management and role in people’s subsistence. Agrofor. Syst. 2012, 84, 207–226. [Google Scholar] [CrossRef]
- Lemenih, M.; Teketay, D. Frankincense and miyrrh resources of Ethiopia: I Distribution, production, opportunities for dryland development and research needs. Ethiop J. Sci. J. 2003, 26, 63–72. [Google Scholar]
- Lemenih, M.; Wiersum, K.F.; Woldeamanuel, T.; Bongers, F. Diversity and dynamics of management of gum and resin resources in Ethipia: A trade-off between domestication and degradation. Land Degrad. Dev. 2011, 25, 130–142. [Google Scholar] [CrossRef]
- Katz, E.; Goloubinoff, M.; Perez, M.R.; Michon, G. Experiences in Benzoin Resin Production in Sumatra, Indonesia. In Conservation, Management and Utilization of Plant Gums, Resins and Essential Oils; Mugah, J.O., Chikamai, B.N., Mbiru, S.S., Casadei, E., Eds.; AIDGUM-FAO-GTZ-TWAS: Nairobi, Kenya, 1997; pp. 56–66. [Google Scholar]
- Taye, A. Domesticating Frankincense Tree (Boswellia papyrifera) in the Blue Nile Gorge of Ethiopia; Natural Resources Management: Addis Ababa, Ethiopia, 2002; pp. 1–12. [Google Scholar]
- Ladipo, D. Plant gums, resins and essential oil resources in Africa: Potentials for domestication. In Conservation, Management and Utilization of Plant Gums, Resins and Essential Oils; Mugah, J.O., Chikamai, B.N., Mbiru, S.S., Casadei, E., Eds.; AIDGUM-FAO-GTZ-TWAS: Nairobi, Kenya, 1997; pp. 23–32. [Google Scholar]
- Maldonado, B.; Caballero, J.; Delgado, A.; Lira, R. Relationship between use value and ecological importance of floristic resources of seasonally dry tropical forest at the Balsas river basin, Mexico. Econ. Bot. 2013, 67, 17–29. [Google Scholar] [CrossRef]
- Vaylón-Chávez, L.I. Uso y distribución de Castilla elástica (hule) en Zozocolco de Guerrero Veracruz. Bachelor’s Thesis, Universidad Nacional Autónoma de México, México City, Mexico, 2012. [Google Scholar]
- de la Peña-Domene, M.; Martínez-Garza, C.; Palmas-Pérez, S.; Rivas-Alonso, E.; Howe, H.F. Roles of birds and bats in early tropical-forest restoration. PLoS ONE 2014, 9, e104656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Pulido, R.; Rico-Gray, V. Seed Dispersal of Bursera fagaroides (Burseraceae): The effect of linking environmental factors. Southwest. Nat. 2006, 51, 11–21. [Google Scholar] [CrossRef]
- De la Peña-Domene, M.; Minor, E.S.; Howe, H.F. Restored connectivity facilitates recruitment by an endemic large-seeded tree in a fragmented tropical landscape. Ecology 2016, 97, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Shukla, A.; Sing, P. Agroforestry and Livelihood Opportunities from Natural Resins and Gums (NRGS) including Lac. In Agroforestry Research and Development to Improve Livelihood. Nutritional and Environmental Security: Policy, Practice and Impact; Dhyani, S.K., Nayak, D., Rizvi, J., Eds.; Sout Asia Regional Program; World Agroforestry: New Delhi, India, 2019; pp. 145–156. [Google Scholar]
- Poschen, P. An evaluation of Acacia albida-based agroforestry practices to the Hararghe highlands of Eastern Ethiopia. Agrofor. Syst. 1986, 4, 29–143. [Google Scholar] [CrossRef]
- Weil, R.R.; Mughogho, S.K. Nutrient cycling by Acacia albida (syn. Faidherbia albida) in Agroforestry systems. In Technologies for Sustainable Agriculture in the Tropics; Ragland, J., Rattan, L., Eds.; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 1993; Volume 56, pp. 97–108. ISBN 978-089-118-118-7. [Google Scholar]
- Ballal, M.E.; El Siddig, E.A.; Efadl, M.A.; Luukkanen, O. Gum arabic yield in differently managed Acacia senegal stands in western Sudan. Agrofor. Syst. 2005, 63, 237–245. [Google Scholar] [CrossRef]
- Moreno-Calles, A.I.; Casas, A.; Toledo, V.M.; Vallejo, M. Etnoagroforestería en México, los proyectos y la idea del libro. In Etnoagroforestería en México; Moreno-Calles, A.I., Casas, A., Toledo, V.M., Vallejo, M., Eds.; Universidad Nacional Autónoma de México: México City, Mexico, 2012; pp. 10–26. ISBN 978-607-02-8164-8. [Google Scholar]
- Campos-Salas, N.; Casas, A.; Moreno-Calles, A.I.; Vallejo, M. Plant Management in Agroforestry Systems of Rosetophyllous Forests in the Tehuacán Valley, Mexico. Econ. Bot. 2016, 70, 254–269. [Google Scholar] [CrossRef]
- Castellanos-Castro, C.; Bonfil, C. Propagation of three Bursera species from cuttings. Bot. Sci. 2013, 91, 217–224. [Google Scholar] [CrossRef]
- Moreno-Calles, A.I.; Toledo, V.; Casas, A. Los sistemas agroforestales tradicionales de México: Una aproximación biocultural. Econ. Bot. 2013, 91, 375–398. [Google Scholar] [CrossRef]
- Flachsenberg, H.; Galletti, H. Forest Management in Quintana Roo, Mexico. In Timber, Tourists, and Temples. Conservation and Development in the Maya Forest of Belize, Guatemala, and Mexico; Primack, R., Barton, D., Galletti, H., Ponciano, I., Eds.; Island Press: Washington, DC, USA, 1998; pp. 47–60. ISBN 155-963-542-8. [Google Scholar]
- Dussol, L.; Elliott, M.; Michelet, D.; Nondédéo, P. Ancient Maya sylviculture of breadnut (Brosimum alicastrum Sw.) and sapodilla (Manilkara zapota (L.) P. Royen) at Naachtun (Guatemala): A reconstruction based on charcoal analysis. Quat. Int. 2017, 457, 29–42. [Google Scholar] [CrossRef]
- Izquierdo-Bautista, H.; Domínguez-Domínguez, M.; Martínez-Zurimendi, P.; Velázquez-Martínez, A.; Córdova-Ávalos, V. Problemática en los procesos de producción de las plantaciones de hule Hevea brasiliensis Muell Arg. en Tabasco, México. Trop. Subtrop. Agroecosyst. 2011, 14, 513–524. [Google Scholar]
- Alcorn, J. Development policy, forests, and peasant farms: Reflections on Huastec-managed forests’ contributions to commercial production and resource conservation. Econ. Bot. 1984, 38, 389–406. [Google Scholar] [CrossRef]
- Coronado, V.J.A. Estudio etnobotánico del árbol de Pom [Protium copal, (Schelcht. et Cham.) Engler] en el municipio de Cahabón, Alta Verapaz. Guatemala. Bachelor’s Thesis, Instituto de Investigaciones Agronómicas, Facultad de Agronomía, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, República de Guatemala, 2006. [Google Scholar]
- Bohn, J.L.; Diemont, S.; Gibbs, J.P.; Stehman, S.; Mendoza-Vega, J. Implications of Mayan agroforestry for biodiversity conservation in the Calakmul Biosphere Reserve, Mexico. Agrofor. Syst. 2014, 88, 269–285. [Google Scholar] [CrossRef]
- Velázquez-Rosas, N.; Silva-Rivera, E.; Ruiz-Guerra, B.; Armenta-Montero, S.; González, J. Traditional Ecological Knowledge as a tool for biocultural landscape restoration in northern Veracruz, Mexico: A case study in El Tajín region. Ecol. Soc. 2018, 23, 6. [Google Scholar] [CrossRef]
- García-Martínez, L. Aspectos Socio-Ecológicos Para el Manejo Sustentable del Copal en el Ejido de Acateyaualco, Guerrero. Bachelor’s Thesis, Centro de Investigación en Ecosistemas, Universidad Nacional Autónoma de México, México City, Mexico, 2012. [Google Scholar]
- Arellano-Ostoa, G.; González-Bernal, S.; Arellano-Hernández, G. Lináloe (Bursera linanoe (La Llave) Rzedowski, Calderón & Medina), Especie maderable amenazada: Una estrategia para su conservación. Agro Product. 2014, 7, 42–51. [Google Scholar]
- Zenteno-Ruíz, F.S. Referencias botánicas, ecológicas y económicas del aprovechamiento del incienso (Clusia vel. sp. nov., Clusiaceae) en bosques montanos del Parque Nacional Madidi, Bolivia. Ecología en Bolivia 2007, 42, 148–156. [Google Scholar]
- Aguirre-Duguá, X.; Eguiarte, L.E.; González-Rodríguez, A.; Casas, A. Round and large: Morphological and genetic consequences of artificial selection on the gourd tree Crescentia cujete by the Maya of the Yucatan Peninsula, Mexico. Ann. Bot. 2012, 109, 1297–1306. [Google Scholar] [CrossRef]
- Aguirre-Duguá, X.; Pérez-Negrón, E.; Casas, A. Phenotypic differentiation between wild and domesticated varieties of Crescentia cujete L. and culturally relevant uses of their fruits as bowls in the Yucatan Peninsula, Mexico. J. Ethnobiol. Ethnomed. 2013, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, K.; Muys, B.; Haile, M.; Mitloehner, R. Introducing Boswellia papyrifera (Del) Hoscht. and its non-timber forest product, frankincense. Int. For. Rev. 2003, 5, 348–353. [Google Scholar] [CrossRef]
- Ogbazghi, W.; Bongers, F.; Rijkers, T.; Wessel, M. Population structure and morphology of the frankincense tree Boswellia papyrifera along an altitude gradient in Eritrea. J. Drylands Agric. 2006, 1, 85–94. [Google Scholar]
- Eshete, A. The Frankincense tree of Ethiopia. Ecology, Productivity and Population Dynamics. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2011. [Google Scholar]
- Neels, S. Yield, Sustainable Harvest and Cultural Uses of Resin from the Copal Tree Protium copal; Burceraceae) in the Carmelita Community Forest Concession, Petén, Guatemala. Master’s Thesis, Universidad de Britihs Combia, Vancouver, BC, Canada, 2000. [Google Scholar]
- Cruz-Cruz, M.; Antonio-Gómez, V.M.; Rodríguez-Ortiz, G.; Vásquez-Barranco, I.G.; Lagunes-Rivera, L.; Hernández-Santiago, E. Resina y aceites esenciales de tres especies de copal del sur de Oaxaca, México. Rev. Mex. Agroecosistemas 2017, 4, 12–23. [Google Scholar]
- Tolera, M.; Sass-Klaassen, U.; Eshete, A.; Bongers, F.; Sterck, F. Frankincense yield is related to tree size and resin-canal characteristics. For. Ecol. Manag. 2015, 353, 41–48. [Google Scholar] [CrossRef]
- Wekesa, C.; Makenzi, P.; Chikamai, B.; Luvanda, A.; Muga, M. Traditional ecological knowledge associated with Acacia senegal (Gum arabic tree) management and gum arabic production in northern Kenya. Int. For. Rev. 2010, 12, 240–246. [Google Scholar] [CrossRef]
- Bhatt, J.R.; Nair, N.; Mohan, H. Enhancement of oleo-gum resin production in Commiphora wightii by improved tapping technique. Curr. Sci. 1989, 58, 349–357. [Google Scholar]
- Lambers, H.; Chapin, F.; Pons, T. Plant Physiological Ecology; Springer: New York, NY, USA, 1998; ISBN 978-038-778-341-3. [Google Scholar]
- Zhuang, W.Y.; Zhang, Y.Y.; Zou, Y.X. Selection for high-resin yield of slash pine and analysis of factors concerned. Acta Agric. Univ. Jiangxiensis 2007, 29, 55–60. [Google Scholar]
- Hersch-Martínez, P. Commercialization of wild medicinal plants from southwest Puebla, Mexico. Econ. Bot. 1995, 49, 197–206. [Google Scholar] [CrossRef]
- Glicksman, M. Gum Technology in the Food Industry; Ademic Press: New York, NY, USA, 1969. [Google Scholar]
- Eshete, A.; Teketay, D.; Lemenih, M.; Bongers, F. Effects of resin tapping and tree size on the purity, germination and storage behavior of Boswellia papyrifera (Del.) Hochst. Seeds from Metema District, northwestern Ethiopia. For. Ecol. Manag. 2012, 269, 31–36. [Google Scholar] [CrossRef]
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology and Ethnobotany; Timber Press: Cambridge, MA, USA, 2003; ISBN 088-192-574-8. [Google Scholar]
- Vilela, A.E.; Ravetta, D.A. Gum exudation in South-American species of Prosopis L. (Mimosaceae). J. Arid Environ. 2005, 60, 389–395. [Google Scholar] [CrossRef]
- Minh, H.T.; Huy, T.T.; Lesueur, D.; Bighelli, A.; Casanova, J. Volatile components of Bursera tonkinensis Guill. J. Essent. Oil Bear. Plants 2004, 7, 228–231. [Google Scholar] [CrossRef]
- Moreno, J.; Rojas, L.B.; Aparicio, R.; Marco, L.; Usubillaga, A. Chemical composition of the essential oil from the bark Bursera tomentosa (Jacq) T & Planch. Bol. Lat. Caribe Plant Med. Aromat. 2010, 9, 491–494. [Google Scholar]
- De Carlo, A.; Dosoky, N.S.; Satyal, P.; Sorensen, A.; Setzer, W.N. The essential oils of the burseraceae. In Essential Oil Research: Trends in Biosynhesis, Analytics, Industrial Applications and Biotechnological Production; Malik, S., Ed.; Springer: Cambridge, UK, 2019; pp. 61–145. [Google Scholar]
- Case, R.J.; Tucker, A.O.; Maciarello, J.M.; Wheeer, K.A. Chemistry and ethnobotany of commercial incense copals, copal blanco, copal oro, and copal negro, of North America. Econ. Bot. 2003, 57, 189–202. [Google Scholar] [CrossRef]
- Gigliarelli, G.; Becerra, J.; Curini, M.; Marcotullio, M.C. Chemical composition and biological activities of fragrant mexican copal (Bursera spp.). Molecules 2015, 20, 22383–22394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzedowski., J.; Medina, R.; Calderón de Rzedowski, G. Inventario del conocimiento taxonómico, así como de la diversidad y del endemismo regionales de las especies mexicanas de Bursera (Burseraceae). Acta Bot. Mex. 2005, 70, 75–111. [Google Scholar] [CrossRef]
- Niebler, J.; Buettner, A. Quantification of odor active compounds from Boswellia sacra frankincense by stable isotope dilution assays (SIDA) in combination with TDU-GC-MS. Lebensmittelchemie 2015, 69, 73–104. [Google Scholar] [CrossRef]
- Wiersum, K.F. From natural forest to tree crops, co-domestication of forests and tree species, an overview. Neth. J. Agric. Sci. 1997, 45, 425–438. [Google Scholar] [CrossRef]
- Wiersum, K.F. Domestication of trees or forests: Development pathways for fruit tree production in South-east Asia. In Indigenous Fruit Trees in the Tropics: Domestication, Utilization and Commercialization; Akinnifesi, F.K., Leakey, R., Ajayi, O.C., Sileshi, G., Tchoundjeu, Z., Matakala, P., Kwesiga, F.R., Eds.; CAB International: Wallingford, UK, 2008; pp. 70–83. ISBN 978-184-593-110-0. [Google Scholar]
- Addisalem, A.B.; Bongers, F.; Kassahun, T.; Smulders, M.J. Genetic diversity and differentiation of the frankincense tree (Boswellia papyrifera (Del.) Hochst) across Ethiopia and implications for its conservation. For. Ecol. Manag. 2016, 360, 253–260. [Google Scholar] [CrossRef]
- Michon, G.; de Foresta, H.; Levang, P.; Verdeaux, F. Domestic forests: A new paradigm for integrating local communities’ forestry into tropical forest science. Ecol Soc. 2007, 12, 1–26. [Google Scholar] [CrossRef]
- Rijkers, T.; Ogbazghi, W.; Wessei, M.; Bongers, F. The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J. Appl. Ecol. 2006, 43, 1188–1195. [Google Scholar] [CrossRef]
Species and Common Name | Origin of Trees | Morphological Attributes | Consistency |
---|---|---|---|
Bursera bipinnata (DC.) Engl. Copal chino | Copal de las parcelas (copal from crop parcels) | Glossy stem Soft bark (easy to tap) Small and glossy leaves Less resin yield | Solid (it solidifies when exposed to the air; this is a process that takes time, by the third day after exposition, it starts looking crystalline) Liquid (this resin does not solidify and is not extracted). Is more common in the trees named “cimarrón” or “de monte” |
“Cimarrón” or “de monte” (wild) | Smaller trees Dark bark | ||
Bursera copallifera (DC.) Bullock Copal ancho | Copal de las parcelas (copal from crop parcels) | Ashy stem Harder bark (harder to tap) Large and ashy leaves Greater resin yields | Solid (it solidifies when exposed to the air; this is a process that takes time, and in the third day after exposition, it starts looking crystalline) Liquid (this resin does not solidify and is not extracted). Is more common in the trees named “cimarrón” or “de monte” |
“Cimarrón” or “de monte” (wild) | Smaller trees Dark stem |
Criteria | Description |
---|---|
Scent | Fragrant Lime “Ticumaca”–B. bicolor (not tapped) |
Color | White. Refers to copal chino, B. bipinnata Yellow. Refers to copal ancho, B. copallifera Greenish blue. Refers to copal limón, from B. bipinnata and B. copallifera |
Origin | Copal that comes in the leaf (penca) or “planchita”. This copal is collected in an agave leaf and solidified into a bar. “Lágrima” (tear). Resin that drips from the incision to the leaf (penca). “Goma” (gum). This is created by a larvae or worm (as copaleros call it) in the bark of the tree. Myrrh or bark. These are the resin leftovers that stick to the bark (this resin is seldom collected because it increases the tree’s susceptibility to diseases). |
Type of Management | Management Strategies | Management Practices | Aim of the Activity |
---|---|---|---|
In situ | Collection | Collection and extraction of different types of resin: penca or planchita (agave leaf); lágrima (tear); goma (gum) and cáscara (bark) or myrrh | To commercialize and to generate income |
Tolerance | Copal trees are kept standing at the time of clearing up land for agriculture | Maintain copal trees that produce higher resin yields | |
Transplant | Small individuals are transplanted to other places to increase their survival possibilities | Reforest forests, crop parcels, and grazing lands To conserve copal and prevent its depletion | |
Promotion | Ridding of lianas, bromelia, and grasses that grow on top of or under the trees | To improve the tree’s growth, exposition to light, increase resin production, and prevent leaves from falling on resin during the tapping season | |
Fell surrounding trees | To avoid shade, therefore stimulating growth | ||
Prune dry branches | To enhance regrowth | ||
Protection | Eliminate beetles considered plagues | To prevent the tree from drying up | |
Surround trees with a mud wall, especially small trees | To stimulate growth | ||
To gather rocks around seedlings and small trees | To prevent cattle from eating or stepping on them | ||
Ex situ | Transplant of vegetative parts | Transplant stakes of the most productive trees | Reforest forests to prevent this resource from being depleted, to propagate local species in greenhouses, to germinate seeds of the trees with the most valued utilitarian attributes (yield, scent, and consistency) |
Transplant complete individuals | Transplanting of complete individuals | ||
Germination of seeds | Collect seeds from the most productive trees |
Criteria | Selected Attribute |
---|---|
Strength | Large trees of healthy appearance, with no presence of pests or diseases |
Age | Trees between 8 and 10 years of age |
Stem | Thick, from 15 to 20 cm |
Bark | Glossy gray and soft to the touch to make tapping easier |
Leaves | Glossy green and spike-ended pines |
Yield | Greater resin yield |
Scent | Fragrant, when crushing leaves a lime-like scent is perceived |
Resin consistency | Solid |
Resin color | White |
Condition | Height (m) | Canopy Cover (m2) |
---|---|---|
Mean and SD | Mean and SD | |
Managed | 4.74 ± 1.48 | 17.52 ± 11.18 |
Wild | 3.89 ± 1.54 | 9.35 ± 4.10 |
Degrees of freedom | 58 | 58 |
Value of the t statistic | 2.17 | 3.69 |
P value | 0.01671 | 0.00024 |
Covariable | Season | Resin Yield (g) | ||||
---|---|---|---|---|---|---|
Population | Average Resin Yield (g) | p Value | Covariable | Regression Coefficient | ||
Average temperature | 2017 | Wild | 31.26 ± 25.20 | 0.003 | 0.848 | 3.850 |
Managed | 190.17 ± 329.04 | |||||
2018 | Wild | 63.05 ± 53.25 | 0.008 | 0.719 | 4.690 | |
Managed | 175.88 ± 179.29 | |||||
Relative humidity | 2017 | Wild | 31.26 ± 25.20 | 0.003 | 0.948 | −0.080 |
Managed | 190.17 ± 329.04 | |||||
2018 | Wild | 63.05 ± 53.25 | 0.008 | 0.7089 | 3.590 | |
Managed | 175.88 ± 179.29 |
Compound | Scent | Consistency | Percentage Concentration of the Compound Relative to the Total Composition in Resin | ||||||
---|---|---|---|---|---|---|---|---|---|
RI exp | RI theo | Managed | Wild | Significance t Test | |||||
Mean | SD | Mean | SD | p | |||||
911 | 924 | α-thujene | X | 0.47 | 0.26 | 0.60 | 0.28 | 0.438 | |
942 | 932 | α-pinene | X | 0.88 | 0.55 | 1.46 | 0.75 | 0.154 | |
960 | 969 | sabinene | X | 0.52 | 0.28 | 0.64 | 0.27 | 0.293 | |
963 | 974 | β-pinene | X | 0.35 | 0.14 | 0.62 | 0.24 | 0.019 | |
985 | 988 | β-myrcene | X | 0.46 | 0.20 | 3.56 | 3.90 | 0.005 | |
1002 | 1002 | α-phellandrene | X | 20.36 | 7.96 | 23.38 | 10.25 | 0.231 | |
1023 | 1025 | β-phellandrene | X | 2.13 | 1.23 | 4.44 | 2.58 | 0.113 | |
1083 | 1086 | terpinolene | X | 4.75 | 2.21 | 5.05 | 3.05 | 0.250 | |
1180 | 1187 | verbenol | X | 0.54 | 0.29 | 0.81 | 0.76 | 0.404 | |
1195 | 1224 | sabinyl acetate | X | 0.34 | 0.13 | 0.70 | 0.28 | 0.028 | |
1434 | 1417 | caryophyllene | X | 4.13 | 3.17 | 11.91 | 5.80 | 0.015 | |
1453 | 1452 | α-humulene | X | 0.76 | 0.44 | 1.68 | 2.51 | 0.062 | |
1520 | 1522 | calemene | X | 0.46 | 0.18 | 0.533 | 0.29 | 0.079 | |
1529 | 1524 | δ-cadinene | X | 0.64 | 0.29 | 0.39 | 0.17 | 0.002 | |
1579 | 1582 | caryophyllene oxide | X | 0.39 | 0.22 | 1.29 | 0.66 | 0.003 | |
1636 | 1652 | δ-cadinol | X | 1.83 | 1.66 | 0.56 | 0.28 | 4.3 × 10−8 | |
3354 | 3376 | α-amyrin | X | 13.69 | 14.78 | 6.50 | 9.46 | 0.090 | |
3577 | 3525 | lupeol acetate | X | 3.92 | 1.85 | 5.65 | 4.20 | 0.025 | |
3713 | 3760 | betulin | X | 19.60 | 14.89 | 16.60 | 14.17 | 0.082 | |
3894 | NA | β-amyrin | X | 23.67 | 11.81 | 13.53 | 6.68 | 2.4 × 10−5 |
Compounds | PC1 | PC2 |
---|---|---|
α-thujene | 0.79 | −0.51 |
sabinene | 0.80 | −0.41 |
β-pinene | 0.84 | −0.41 |
β-myrcene | 0.55 | 0.07 |
α-phellandrene | 0.67 | 0.56 |
β-phellandrene | 0.78 | 0.16 |
terpinolene | 0.67 | 0.54 |
verbenol | 0.71 | −0.61 |
caryophyllene | 0.71 | −0.00 |
α-humulene | 0.83 | −0.22 |
caryophyllene oxide | 0.76 | −0.33 |
lupeol acetate | 0.75 | −0.32 |
α-pinene | 0.43 | 0.76 |
sabinyl acetate | 0.47 | 0.79 |
calemene | −0.08 | 0.95 |
δ-cadinene | 0.50 | 0.80 |
δ-cadinol | −0.13 | 0.96 |
β-amyrin | 0.41 | 0.69 |
α-amyrin | 0.06 | 0.36 |
betulin | 0.30 | 0.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Fitz, I.; Maldonado-Almanza, B.; Aguilar-Dorantes, K.M.; Sánchez-Méndez, L.; Gómez-Caudillo, L.; Casas, A.; Blancas, J.; García-Rodríguez, Y.M.; Beltrán-Rodríguez, L.; Sierra-Huelsz, J.A.; et al. Consequences of Traditional Management in the Production and Quality of Copal Resin (Bursera bipinnata (Moc. & Sessé ex DC.) Engl.) in Mexico. Forests 2020, 11, 991. https://doi.org/10.3390/f11090991
Abad-Fitz I, Maldonado-Almanza B, Aguilar-Dorantes KM, Sánchez-Méndez L, Gómez-Caudillo L, Casas A, Blancas J, García-Rodríguez YM, Beltrán-Rodríguez L, Sierra-Huelsz JA, et al. Consequences of Traditional Management in the Production and Quality of Copal Resin (Bursera bipinnata (Moc. & Sessé ex DC.) Engl.) in Mexico. Forests. 2020; 11(9):991. https://doi.org/10.3390/f11090991
Chicago/Turabian StyleAbad-Fitz, Itzel, Belinda Maldonado-Almanza, Karla María Aguilar-Dorantes, Luis Sánchez-Méndez, Leopoldo Gómez-Caudillo, Alejandro Casas, José Blancas, Yolanda Magdalena García-Rodríguez, Leonardo Beltrán-Rodríguez, José Antonio Sierra-Huelsz, and et al. 2020. "Consequences of Traditional Management in the Production and Quality of Copal Resin (Bursera bipinnata (Moc. & Sessé ex DC.) Engl.) in Mexico" Forests 11, no. 9: 991. https://doi.org/10.3390/f11090991
APA StyleAbad-Fitz, I., Maldonado-Almanza, B., Aguilar-Dorantes, K. M., Sánchez-Méndez, L., Gómez-Caudillo, L., Casas, A., Blancas, J., García-Rodríguez, Y. M., Beltrán-Rodríguez, L., Sierra-Huelsz, J. A., Cristians, S., Moreno-Calles, A. I., Torres-García, I., & Espinosa-García, F. J. (2020). Consequences of Traditional Management in the Production and Quality of Copal Resin (Bursera bipinnata (Moc. & Sessé ex DC.) Engl.) in Mexico. Forests, 11(9), 991. https://doi.org/10.3390/f11090991