Tree Cover Loss in the Mediterranean Region—An Increasingly Serious Environmental Issue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.3. Methodology
3. Results
Tree Cover Loss in the Mediterranean Region
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Vásquez-Grandón, A.; Donoso, P.J.; Gerding, V. Forest Degradation: When Is a Forest Degraded? Forests 2018, 9, 726. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B. Landscape change and the science of biodiversity conservation in tropical forests: A view from the temperate world. Biol. Conserv. 2010, 143, 2405–2411. [Google Scholar] [CrossRef]
- Otero, X.L.; Mendez, A.; Nobrega, G.N.; Ferreira, T.O.; Santiso-Taboada, M.J.; Melendez, W.; Macias, F. High fragility of the soil organic C pools in mangrove forests. Mar. Pollut. Bull. 2017, 119, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Margono, B.A.; Turubanova, S.; Zhuravleva, I.; Potapov, P.; Tyukavina, A.; Baccini, A.; Goetz, C.; Hansen, M.C. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environ. Res. Lett. 2012, 7, 034010. [Google Scholar] [CrossRef]
- Simion, A.G.; Nedelcu, I.D.; Grecu, A.; Popa, M.C.; Peptenatu, D. Analysis of the Dynamics of Forest Areas in the Territorial Administrative Units of The Apuseni Mountains, Romania. In Proceedings of the Conference on Public Recreation and Landscape Protection-with Sense Hand in Hand? Krtiny, Czech Republic, 13–15 May 2019; Fialova, J., Ed.; Mendel University: Brno, Czech Republic, 2019; pp. 29–34. [Google Scholar]
- FAO and UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People. Rome. 2020. Available online: http://www.fao.org/documents/card/en/c/ca8642en (accessed on 26 June 2020).
- Kumar, P.; Krishna, A.P.; Rasmussen, T.M.; Pal, M.K. An Approach for Fraction of Vegetation Cover Estimation in Forest Above-Ground Biomass Assessment Using Sentinel-2 Images. In Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science; Singh, S.K., Roy, P., Raman, B., Nagabhushan, P., Eds.; Springer: Singapore, 2021; p. 1376. [Google Scholar] [CrossRef]
- GFW. Global Forest Watch. World Resources Institute. 2014. Available online: www.globalforestwatch.org (accessed on 26 June 2020).
- Food and Agriculture Organization of the United Nations-State of Mediterranean Forests 2018. Available online: http://www.fao.org/3/CA2081EN/ca2081en.PDF?fbclid=IwAR2XiKuQHU5SWkDCxb6-ALrhsmqFNb0CsQhyhcqi09TWckQKukRdBK5TOgw (accessed on 22 August 2021).
- Fabbio, G.; Merlo, M.; Tosi, V. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—The Mediterranean region. J. Environ. Manag. 2003, 67, 67–76. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Coll, M.; Piroddi, C.; Steenbeek, J.; Lasram, F.B.; Zenetos, A.; Cardoso, A.C. Invading the Mediterranean Sea: Biodiversity patterns shaped by human activities. Front. Mar. Sci. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Rundel, P.W.; Arroyo, M.T.K.; Cowling, R.M.; Keeley, J.E.; Lamont, B.B.; Vargas, P. Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 383–407. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Ginesu, S.; Carboni, D.; Marin, M. Coastline modifications in Sardinia starting from archaeological data: A progress report. In Proceedings of the International Conference of Environment, Landscape, European Identity/Annual Scientific Meeting of the Faculty-of-Geography, Bucharest, Romania, 4–6 November 2011; Patru-Stupariu, I., Patroescu, M., Ioja, C.I., Rozylowicz, L., Eds.; Elsevier Science: Asterdam, The Netherlands, 2011; Volume 14, pp. 132–142. [Google Scholar]
- Ginesu, S.; Carboni, D.; Marin, M. Erosion and use of the coast in the northern Sardinia (Italy). In Proceedings of the 25th International Conference on Environment at Crossroads-SMART Approaches for a Sustainable Future, Bucharest, Romania, 12–15 November 2015; Ioja, I.C., Comanescu, L., Dumitrache, L., Nedelea, A., Nita, M.R., Eds.; Elsevier Science: Asterdam, The Netherlands, 2015; Volume 32, pp. 230–243. [Google Scholar]
- Khorchani, M.; Nadal-Romero, E.; Tague, C.; Lasanta, T.; Zabalza, J.; Lana-Renault, N.; Domínguez-Castro, F.; Choate, J. Effects of active and passive land use management after cropland abandonment on water and vegetation dynamics in the Central Spanish Pyrenees. Sci. Total Environ. 2020, 717, 137–160. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 97–109. [Google Scholar] [CrossRef]
- Thompson, J.D. Plant Evolution in the Mediterranean; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Allan, J.R.; Venter, O.; Maxwell, S.; Bertzky, B.; Jones, K.; Shi, Y.C.; Watson, J.E.M. Recent increases in human pressure and forest loss threaten many Natural World Heritage Sites. Biol. Conserv. 2017, 206, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elaziz, S.; Zeleňáková, M.; Mésároš, P.; Purcz, P.; Abd-Elhamid, H.F. Anthropogenic Activity Effects on Canals Morphology, Case Study: Nile Delta, Egypt. Water 2020, 12, 3184. [Google Scholar] [CrossRef]
- Mostafa, S.M.; Wahed, O.; El-Nashar, W.Y.; El-Marsafawy, S.M.; Zeleňáková, M.; Abd-Elhamid, H.F. Potential Climate Change Impacts on Water Resources in Egypt. Water 2021, 13, 1715. [Google Scholar] [CrossRef]
- Kaplan, J.O.; Krumhardt, K.M.; Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 2009, 28, 3016–3034. [Google Scholar] [CrossRef]
- Raftoyannis, Y.; Nocentini, S.; Marchi, E.; Sainz, R.C.; Guemes, C.G.; Pilas, I.; Peric, S.; Paulo, J.A.; Moreira-Marcelino, A.C.; Costa-Ferreira, M.; et al. Perceptions of forest experts on climate change and fire management in European Mediterranean forests. iForest-Biogeosciences For. 2013, 7, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Prefac, Z.; Dumitru, S.; Chendeș, V.; Sîrodoev, I.; Cracu, G. Assessment of Landslide Susceptibility Using the Certainty Factor Model: Rascuta Catchment (Curvature Subcarpathians) Case Study. Carpathian J. Earth Environ. Sci. 2016, 11, 617–626. [Google Scholar]
- Kaplan, J.O.; Krumhardt, K.M.; Gaillard, M.J.; Sugita, S.; Trondman, A.K.; Fyfe, R.; Marquer, L.; Mazier, F.; Nielsen, A.B. Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions. Land 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Alipour, O. Degradation of Mollisols quality after deforestation and cultivation on a transect with Mediterranean condition. Environ. Earth Sci. 2017, 76, 22. [Google Scholar] [CrossRef]
- Palahi, M.; Mavsar, R.; Gracia, C.; Birot, Y. Mediterranean forests under focus. Int. For. Rev. 2008, 10, 676–688. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Torun, P.; Altunel, A.O. Effects of environmental factors and forest management on landscape-scale forest storm damage in Turkey. Ann. For. Sci. 2020, 77, 2. [Google Scholar] [CrossRef]
- Ogaya, R.; Peñuelas, J. Climate Change Effects in a Mediterranean Forest Following 21 Consecutive Years of Experimental Drought. Forests 2021, 12, 306. [Google Scholar] [CrossRef]
- Munyua, H. ICTs and Small-Scale Agriculture in Africa: A Scoping Study. Final Report. International Development Research Centre (IDRC), Ottawa. 2007. Available online: https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/50998/IDL-50998.pdf?sequence=1 (accessed on 26 June 2020).
- CBO-Congressional Budget Office, The Congress of the United States, Deforestation and Greenhouse Gases. Available online: https://www.cbo.gov/sites/default/files/112th-congress-2011-2012/reports/1-6-12-forest.pdf (accessed on 26 June 2020).
- Peptenatu, D.; Sirodoev, I.; Pravalie, R. Quantification of the aridity process in South-Western Romania. J. Environ. Health Eng. 2013, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pravalie, R.; Peptenatu, D.; Sirodoev, I. The Impact of Climate Change on the Dynamics of Agricultural Systems in South-Western Romania. Carpathian J. Earth Environ. Sci. 2013, 8, 175–186. [Google Scholar]
- Comanescu, L.; Nedelea, A. Floods and public perception on their effect. Case Study: Tecuci Plain (Romania), year 2013. In Proceedings of the 25th International Conference on Environment at Crossroads-SMART Approaches for a Sustainable Future, Bucharest, Romania, 12–15 November 2015; Ioja, I.C., Comanescu, L., Dumitrache, L., Nedelea, A., Nita, M.R., Eds.; Elsevier Science: Asterdam, The Netherlands, 2015; Volume 32, pp. 190–199. [Google Scholar]
- Diakakis, M.; Priskos, G. Public perception of flood risk in flash flood prone areas of Eastern Mediterranean: The case of Attica Region in Greece. Int. J. Disaster Risk Reduct. 2018, 28, 404–413. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D. Evaluation of Hydrological and Hydraulic Models Applied in Typical Mediterranean Ungauged Watersheds Using Post-Flash-Flood Measurements. Hydrology 2020, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean climate: An overview of the main characteristics and issues. In Mediterranean Climate Variability; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Ramdani, M.; Elkhiati, N.; Flower, R.J. Lakes of Africa: North of Sahara. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 2, pp. 544–554. [Google Scholar]
- Underwood, E.C.; Viers, J.H.; Klausmeyer, K.R.; Cox, R.L.; Shaw, M.R. Threats and biodiversity in the mediterranean biome. Divers. Distrib. 2009, 15, 188–197. [Google Scholar] [CrossRef]
- Azuara, J.; Lebreton, V.; Peyron, O.; Mazier, F.; Combourieu-Nebout, N. The Holocene history of low altitude Mediterranean Fagus sylvatica forests in southern France. J. Veg. Sci. 2018, 29, 438–449. [Google Scholar] [CrossRef]
- Bugalho, M.N.; Caldeira, M.C.; Pereira, J.S.; Aronson, J.; Pausas, J.G. Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front. Ecol. Environ. 2011, 9, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Ciobotaru, A.-M. Impactul Defrisarilor Asupra Dinamicii Structurale a Economiilor Locale din Judetul Suceava; Editura Transversal: Targoviste, Romania, 2020; p. 262. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. Available online: http://earthenginepartners.appspot.com/science-2013-global-forest (accessed on 21 June 2020). [CrossRef] [PubMed] [Green Version]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape-wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Shaer, H.M. Land desertification and restoration in Middle East and North Africa (MENA) region. Sci. Cold Arid Reg. 2015, 7, 7–15. [Google Scholar] [CrossRef]
- Iglesias, A.; Mougou, R.; Moneo, M.; Quiroga, S. Towards adaptation of agriculture to climate change in the Mediterranean. Reg. Environ. Chang. 2011, 11, 159–166. [Google Scholar] [CrossRef]
- Fernández-García, V.; Marcos, E.; Huerta, S.; Calvo, L. Soil-vegetation relationships in Mediterranean forests after fire. For. Ecosyst. 2021, 8, 18. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Cerri, C.C.; Maia, S.M.F.; Cherubin, M.R.; Feigl, B.J.; Lal, R. Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability 2018, 10, 989. [Google Scholar] [CrossRef] [Green Version]
- Parente, L.; Ferreira, L. Assessing the Spatial and Occupation Dynamics of the Brazilian Pasturelands Based on the Automated Classification of MODIS Images from 2000 to 2016. Remote Sens. 2018, 10, 606. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Modugno, S.; Panagos, P.; Marchetti, M.; Schütt, B.; Montanarella, L. Detection of harvested forest areas in Italy using Landsat imagery. Appl. Geogr. 2014, 48, 102–111. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Kouassi, J.-L.; Gyau, A.; Diby, L.; Bene, Y.; Kouamé, C. Assessing Land Use and Land Cover Change and Farmers’ Perceptions of Deforestation and Land Degradation in South-West Côte d’Ivoire, West Africa. Land 2021, 10, 429. [Google Scholar] [CrossRef]
No. | Satellite Images and Spatial Resolution | Longitude | Latitude | Data Source |
---|---|---|---|---|
1 | LANDSAT 7 ETM+, 30 m | 10°–20° N | 0°–10° E | GFC |
2 | 10°–20° N | 20°–30° E | ||
3 | 20°–30° N | 0°–10° E | ||
4 | 20°–30° N | 10°–20° E | ||
5 | 20°–30° N | 0°–10° W | ||
6 | 20°–30° N | 20°–30° E | ||
7 | 20°–30° N | 10°–20° W | ||
8 | 20°–30° N | 30°–40° E | ||
9 | 30°–40° N | 0°–10° E | ||
10 | 30°–40° N | 10°–20° E | ||
11 | 30°–40° N | 0°–10° W | ||
12 | 30°–40° N | 20°–30° E | ||
13 | 30°–40° N | 30°–40° E | ||
14 | 30°–40° N | 40°–50° E | ||
15 | 40°–50° N | 0°–10° E | ||
16 | 40°–50° N | 10°–20° E | ||
17 | 40°–50° N | 0°–10° W | ||
18 | 40°–50° N | 20°–30° E | ||
19 | 40°–50° N | 30°–40° E | ||
20 | 40°–50° N | 40°–50° E | ||
21 | 50°–60° N | 0°–10° E |
Country | Country Area | Tree Cover Loss 2001 | Tree Cover Loss 2005 | Tree Cover Loss 2010 | Tree Cover Loss 2015 | Tree Cover Loss 2019 | Cumulative Tree Cover Loss (2001–2019) |
---|---|---|---|---|---|---|---|
(ha) | |||||||
Albania | 2,873,537 | 3729 | 695 | 656 | 284 | 1074 | 39,047 |
Algeria | 124,831,323 | 3469 | 4470 | 2606 | 5707 | 6291 | 158,275 |
Andorra | 46,800 | NA * | NA * | NA * | NA * | NA * | NA * |
Bosnia and Herzegovina | 5,106,883 | 1496 | 574 | 911 | 581 | 1232 | 30,073 |
Bulgaria | 11,158,731 | 8202 | 6567 | 3569 | 7293 | 4125 | 123,569 |
Croatia | 5,707,840 | 3378 | 2747 | 3499 | 2669 | 5978 | 76,297 |
Cyprus | 925,100 | NA * | NA * | NA * | NA * | NA * | NA * |
Egypt | 98,376,439 | 148 | 53 | 98 | 32 | 21 | 1732 |
France | 54,951,498 | 34,421 | 46,391 | 143,265 | 37,293 | 81,304 | 1,142,699 |
Greece | 13,257,505 | 12,617 | 4181 | 7785 | 3840 | 7604 | 182,913 |
Israel | 2,077,000 | NA * | NA * | NA * | NA * | NA * | NA * |
Italy | 30,075,443 | 9871 | 10,896 | 15,806 | 14,124 | 59,705 | 358,569 |
Jordan | 8,911,879 | 1 | 0 | 0 | 0 | 1 | 7 |
Kosovo | 1,088,700 | NA * | NA * | NA * | NA * | NA * | NA * |
Lebanon | 1,023,804 | 299 | 300 | 115 | 174 | 390 | 4147 |
Libya | 176,000,000 | NA * | NA * | NA * | NA * | NA * | NA* |
Macedonia | 6,700,000 | NA * | NA * | NA * | NA * | NA * | NA * |
Malta | 32,335 | 1 | 0 | 1 | 0 | 0 | 13 |
Monaco | 202 | NA * | NA * | NA * | NA * | NA * | NA * |
Montenegro | 1,381,200 | NA * | NA * | NA * | NA * | NA * | NA * |
Morocco | 41,348,767 | 1868 | 1526 | 988 | 952 | 1250 | 37,419 |
Palestine | 621,997 | 2 | 0 | 1 | 0 | 0 | 18 |
Portugal | 8,955,506 | 24,405 | 38,934 | 48,401 | 46,097 | 36,886 | 1,027,175 |
San Marino | 6120 | NA * | NA * | NA * | NA * | NA * | NA * |
Serbia | 7,823,140 | 2380 | 1551 | 2462 | 2815 | 3962 | 52,807 |
Slovenia | 1,998,091 | 615 | 1951 | 1434 | 1025 | 3456 | 45,059 |
Spain | 50,604,279 | 32,811 | 48,955 | 56,093 | 65,414 | 71,022 | 1,231,065 |
Syria | 18,691,800 | 267 | 792 | 241 | 2393 | 1177 | 20,681 |
Tunisia | 15,486,458 | 231 | 633 | 398 | 1880 | 573 | 26,937 |
Turkey | 78,070,341 | 22,910 | 20,411 | 17,008 | 27,735 | 39,118 | 499,959 |
Vatican | 44 | NA * | NA * | NA * | NA * | NA * | NA * |
No. | Country | W | p-Value | Standard Deviation |
---|---|---|---|---|
1 | Albania | 0.81 | 0.001462 | 1724.88 |
2 | Algeria | 0.48 | 3.579 × 10−7 | 9438.98 |
3 | Bosnia and Herzegovina | 0.92 | 0.1103 | 993.18 |
4 | Bulgaria | 0.95 | 0.4318 | 2105.93 |
5 | Croatia | 0.91 | 0.08276 | 1753.81 |
6 | Egypt | 0.56 | 2.787 × 10−6 | 90.24 |
7 | France | 0.87 | 0.01634 | 26,971.25 |
8 | Greece | 0.59 | 3.138 × 10−6 | 9791.96 |
9 | Italy | 0.79 | 0.0007701 | 13,047.56 |
10 | Jordan | 0.65 | 1.374 × 10−5 | 0.60 |
11 | Lebanon | 0.93 | 0.1503 | 100.44 |
12 | Malta | 0.76 | 0.0003579 | 0.89 |
13 | Morocco | 0.92 | 0.1335 | 866.03 |
14 | Palestine | 0.85 | 0.006288 | 0.91 |
15 | Portugal | 0.71 | 7.214 × 10−5 | 35,256.54 |
16 | Serbia | 0.98 | 0.9262 | 1053.05 |
17 | Slovenia | 0.79 | 0.0007622 | 2124.55 |
18 | Spain | 0.96 | 0.6258 | 25,074.63 |
19 | Syria | 0.74 | 0.0001789 | 1264.86 |
20 | Tunisia | 0.57 | 2.128 × 10−6 | 1841.72 |
21 | Turkey | 0.96 | 0.602 | 5675.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciobotaru, A.-M.; Patel, N.; Pintilii, R.-D. Tree Cover Loss in the Mediterranean Region—An Increasingly Serious Environmental Issue. Forests 2021, 12, 1341. https://doi.org/10.3390/f12101341
Ciobotaru A-M, Patel N, Pintilii R-D. Tree Cover Loss in the Mediterranean Region—An Increasingly Serious Environmental Issue. Forests. 2021; 12(10):1341. https://doi.org/10.3390/f12101341
Chicago/Turabian StyleCiobotaru, Ana-Maria, Nilanchal Patel, and Radu-Daniel Pintilii. 2021. "Tree Cover Loss in the Mediterranean Region—An Increasingly Serious Environmental Issue" Forests 12, no. 10: 1341. https://doi.org/10.3390/f12101341
APA StyleCiobotaru, A.-M., Patel, N., & Pintilii, R.-D. (2021). Tree Cover Loss in the Mediterranean Region—An Increasingly Serious Environmental Issue. Forests, 12(10), 1341. https://doi.org/10.3390/f12101341