Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tramer, E.J. Bird Behavior during a Total Solar Eclipse. Wilson J. Ornithol. 2000, 112, 431–432. [Google Scholar] [CrossRef]
- Rutter, S.; Tainton, V.; Champion, R.; Le Grice, P. The effect of a total solar eclipse on the grazing behaviour of dairy cattle. Appl. Anim. Behav. Sci. 2002, 79, 273–283. [Google Scholar] [CrossRef]
- Galen, C.; Miller, Z.; Lynn, A.; Axe, M.J.; Holden, S.; Storks, L.; Ramirez, E.; Asante, E.; Heise, D.; Kephart, S.R.; et al. Pollination on the Dark Side: Acoustic Monitoring Reveals Impacts of a Total Solar Eclipse on Flight Behavior and Activity Schedule of Foraging Bees. Ann. Entomol. Soc. Am. 2019, 112, 20–26. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal Conductance and Photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Beverly, D.; Guadagno, C.R.; Bretfeld, M.; Speckman, H.N.; Albekem, S.E.; Ewers, B.E. Hydraulic and photosynthetic responses of big sagebrush to the 2017 total solar eclipse. Sci. Rep. 2019, 9, 8839. [Google Scholar] [CrossRef]
- Zavala, M.A.; Angulo, Ó.; De La Parra, R.B.; López-Marcos, J.C. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: The shade tolerance-stand structure hypothesis revisited. J. Theor. Biol. 2007, 244, 440–450. [Google Scholar] [CrossRef]
- Comita, L.S.; Hubbell, S.P. Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology 2009, 90, 328–334. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, K.; He, D.; Fang, S.; Lee, T.M.; Chu, C.; He, F. Comparing shade tolerance measures of woody forest species. PeerJ 2008, 6, e5736. [Google Scholar] [CrossRef]
- Mathur, S.; Jain, L.; Jajoo, A. Photosynthetic efficiency in sun and shade plants. Photosynthetica 2018, 56, 354–365. [Google Scholar] [CrossRef]
- Squeo, F.A.; Loayza, A.P.; López, R.P.; Gutiérrez, J.R. Vegetation of Bosque Fray Jorge National Park and its sur-rounding matrix in the Coastal Desert of north-central Chile. J. Arid. Environ. 2016, 126, 12–22. [Google Scholar] [CrossRef]
- Figueroa, J.A.; Lusk, C.H. Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytol. 2001, 152, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Caro, B.; Gacitúa-Arias, S.E.; Perret, S.; Sandoval, S.; Curimil, M. Propagación de Especies Forestales Nativas de las Zonas Áridas y Semiáridas de Chile; Instituto Forestal INFOR: Santiago, Chile, 2013. [Google Scholar]
- CONAF. Catastro de Uso del Suelo y Vegetación; Corporación Nacional Forestal: Santiago, Chile, 2004. [Google Scholar]
- Muñoz, M.R.; Squeo, F.A.; León, M.; Tracol, Y.; Gutiérrez, J.R. Hydraulic lift in three shrub species from the Chilean coastal desert. J. Arid. Environ. 2008, 72, 624–632. [Google Scholar] [CrossRef]
- Morales, J.; Squeo, F.A.; Tracol, Y.; Armas, C.; Gutiérrez, J.R. Resource economics and coordination among above- and below-ground functional traits of three dominant shrubs from the Chilean coastal desert. J. Plant Ecol. 2015, 8, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Munné-Bosch, S.; Alegre, L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 2000, 210, 925–931. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; Peñuelas, J.; Munné-Bosch, S.; Sardans, J. Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biol. Invasions 2012, 14, 21–33. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice-Hall/Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Sambandan, K.; Devi, V.K.; Kumar, S.; Nancharaiah, M.; Dhatchanamoorthy, N. Effects of solar eclipse on pho-tosynthesis of Portulaca oleracea and Phyla nodiflora in coastal wild conditions. J. Phytol. 2012, 4, 34–40. [Google Scholar]
- Tominaga, J.; Kawasaki, S.; Yabuta, S.; Fukuzawa, Y.; Suwa, R.; Kawamitsu, Y. Eclipse Effects on CO2 Profile within and above Sorghum Canopy. Plant Prod. Sci. 2010, 13, 338–346. [Google Scholar] [CrossRef]
- Gupta, U.S. Improving photosynthetic efficiency and crop productivity. In Agro´s Annual Review of Plant Physiology; Purohit, S.S., Sahu, M.P., Eds.; Agro Botanical Publishers: Bikaner, India, 1994; pp. 1–50. [Google Scholar]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2014. [Google Scholar]
- Shevela, D.; Björn, L.O.; Govindjee, G. Photosynthesis: Solar Energy for Life; World Scientific Publishing: Singapore, 2019. [Google Scholar]
- Gröbner, J.; Kröger, I.; Egli, L.; Hülsen, G.; Riechelmann, S.; Sperfeld, P. The high-resolution extraterrestrial solar spectrum (Qasumefts) determined from ground-based solar irradiance measurements. Atmos. Meas. Tech. 2017, 10, 3375–3383. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, G.; Petkov, B. Measurements of spectral irradiance during the solar eclipse of 21 August 2017: Reas-sessment of the effect of solar limb darkening and of changes in total ozone. Atmos. Chem. Phys. 2019, 19, 4703–4719. [Google Scholar] [CrossRef] [Green Version]
- Govindjee, G.; Shevela, D.; Björn, L.O. Evolution of the Z-scheme of photosynthesis. Photosynth. Res. 2017, 133, 5–15. [Google Scholar] [CrossRef]
- Laisk, A.; Talts, E.; Oja, V.; Eichelmann, H.; Peterson, R.B. Fast cyclic electron transport around photosystem I in leaves under far-red light: A proton-uncoupled pathway? Photosynth. Res. 2010, 103, 79–95. [Google Scholar] [CrossRef]
- Kono, M.; Yamori, W.; Suzuki, Y.; Terashima, I. Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. Plant Cell Physiol. 2017, 58, 35–45. [Google Scholar]
- Wang, F.; Yan, J.; Jalal-Ahammed, G.; Wang, X.; Bu, X.; Xiang, H.; Li, Y.; Lu, J.; Liu, Y.; Qi, H.; et al. PGR5/PGRL1 and NDH Mediate Far-Red Light-Induced Photoprotection in Response to Chilling Stress in Tomato. Front. Plant Sci. 2020, 11, 669. [Google Scholar] [CrossRef]
- Noton, C. El Guayacán. Chile Forest. 1987, 142, 16–18. [Google Scholar]
- Lusk, C.H.; Contreras, O. Foliage area and crown nitrogen turnover in temperate rain forest juvenile trees of differing shade tolerance. J. Ecol. 1999, 87, 973–983. [Google Scholar] [CrossRef]
- Parada, T.; Lusk, C.H. Patrones en la mortalidad de plántulas de especies arbóreas de un bosque de la transición templado-mediterránea de Chile. Gayana Bot. 2011, 68, 236–243. [Google Scholar] [CrossRef]
- Jahns, P.; Latowski, D.; Strzalka, K. Mechanism and regulation of the violaxanthin cycle: The role of antenna proh-teins and membrane lipids. Biochim. Biophys. Acta Bioenerget. 2009, 1787, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology, 3rd ed.; Springer: New York, NY, USA, 2019. [Google Scholar]
- Körner, C. Alpine Plant Life, 3rd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; 500p. [Google Scholar]
- Streb, P.; Shang, W.; Feierabend, J.; Bligny, R. Divergent strategies of photoprotection in high-mountain plants. Planta 1998, 207, 313–324. [Google Scholar] [CrossRef]
- Givnish, T.J. Adaptation to sun and shade: A whole-plant perspective. Aust. J. Plant Physiol. 1988, 15, 63–92. [Google Scholar] [CrossRef] [Green Version]
- Pearcy, R.W. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 421–453. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Pearcy, R.W. The Importance of Sunflecks for Forest Understory Plants. BioScience 1991, 41, 760–766. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Montenegro, M.A.; Atala, C.; Carrasco-Urra, F. Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance. Forests 2021, 12, 1353. https://doi.org/10.3390/f12101353
Molina-Montenegro MA, Atala C, Carrasco-Urra F. Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance. Forests. 2021; 12(10):1353. https://doi.org/10.3390/f12101353
Chicago/Turabian StyleMolina-Montenegro, Marco A., Cristian Atala, and Fernando Carrasco-Urra. 2021. "Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance" Forests 12, no. 10: 1353. https://doi.org/10.3390/f12101353
APA StyleMolina-Montenegro, M. A., Atala, C., & Carrasco-Urra, F. (2021). Differential Impact of an Eclipse on Photosynthetic Performance of Trees with Different Degrees of Shade Tolerance. Forests, 12(10), 1353. https://doi.org/10.3390/f12101353